FORMAL BALLS IN FUZZY PARTIAL METRIC SPACES

Authors

  • Jiyu Wu Department of Mathematics, Ocean University of China, 238 Songling Road, 266100, Qingdao, P.R.China
  • Yueli Yue Department of Mathematics, Ocean University of China, 238 Songling Road, 266100, Qingdao, P.R.China
Abstract:

In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES

In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via  weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.

full text

Uniformities in fuzzy metric spaces

The aim of this paper is to study induced (quasi-)uniformities in Kramosil and Michalek's fuzzy metric spaces. Firstly, $I$-uniformity in the sense of J. Guti'{e}rrez  Garc'{i}a and $I$-neighborhood system in the sense of H"{o}hle and u{S}ostak are induced by the given fuzzy metric. It is shown that the fuzzy metric and the induced $I$-uniformity will generate the same $I$-neighborhood system. ...

full text

Balls in generalizations of metric spaces

This paper discusses balls in partial b-metric spaces and cone metric spaces, respectively. Let (X ,pb) be a partial b-metric space in the sense of Mustafa et al. For the family of all pb-open balls in (X ,pb), this paper proves that there are x, y ∈ B ∈ such that B′ B for all B′ ∈ , where B and B′ are with centers x and y, respectively. This result shows that is not a base of any topology on X...

full text

On metric spaces induced by fuzzy metric spaces

For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm,  we present a method to construct a metric on a  fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space.  Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...

full text

Quasi-contractive Mappings in Fuzzy Metric Spaces

We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.

full text

$psi -$weak Contractions in Fuzzy Metric Spaces

In this paper, the notion of $psi -$weak contraction cite{Rhoades} isextended to fuzzy metric spaces. The existence of common fixed points fortwo mappings is established where one mapping is $psi -$weak contractionwith respect to another mapping on a fuzzy metric space. Our resultgeneralizes a result of Gregori and Sapena cite{Gregori}.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  155- 164

publication date 2017-04-29

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023