Fluorosilaned-TiO2/PVDF Membrane Distillation with Improved Wetting Resistance for Water Recovery from High Solid Loading Wastewater

Authors

Abstract:

Membrane distillation (MD) has emerged as an important technology for applications in industries such as seawater desalination and wastewater treatment due to its low energy requirement and theoretically low fouling propensity. However, the main obstacle to obtain high separating efciency in MD lies on the availability of porous hydrophobic membrane that can withstand pore wetting and membrane fouling. In this work, a dual coagulation bath method was introduced to alter the membrane morphology by increasing its porosity, surface roughness as well as polymer crystallinity. To increase the membrane hydrophobicity, membrane roughness was induced by adding TiO2 nanoparticles. However, this has brought concomitant impacts by lowering its porosity due to the pore blocking and reducing hydrophobicity due to the presence of hydroxyl group on TiO2 surface. Introduction of silanized TiO2 modifed at pH 7 gave higher contact angle (131.7±4) that could withstand the pore wetting and at the same time maintained its high permeation flux (12kg/m2.h) and excellent nutrient removal efciency of 99.65%. Consistent flux around 6 kg/m2.h for Paper Mill Sequence Batch Reactor (PMSE) could be achieved showing that the membrane wetting and fouling resistance towards solids were good. The system efciency was around 55% which was comparable to the pure water treatment process (50%). However, the membrane was not suitable to be used for treatment of the oil-rich Palm Oil Mill Efuent (POME) as the flux dropped from 6 to 2 kg/m2.h after 7 hours of operation with thermal efciency dropped to 26% due to fouling phenomena.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Membrane Distillation for Water Recovery and Its Fouling Phenomena

The total volume of water on Earth is circa 300 million cubic miles, with close to 98.0% being salt water and the remaining 2.0% fresh water. It has been increasingly more challenging to harvest fresh water from surface water, seawater and even from wastewater due to the combination of factors, viz. burgeoning population growth, rapid industrialization and climate change. Recently, membrane dis...

full text

Novel Janus Membrane for Membrane Distillation with Simultaneous Fouling and Wetting Resistance.

A novel Janus membrane integrating an omniphobic substrate and an in-air hydrophilic, underwater superoleophobic skin layer was developed to enable membrane distillation (MD) to desalinate hypersaline brine with both hydrophobic foulants and amphiphilic wetting agents. Engineered to overcome the limitations of existing MD membranes, the Janus membrane has been shown to exhibit novel wetting pro...

full text

Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system

To recover gold, this work used a novel direct contact membrane distillation (DCMD) reactor with a hybrid electrolytic process. Analytical results demonstrate that permeate flux increased as feed -2 -1 temperature and feed flow rate increased. Permeate flux increased from 2.8 to 17.6 kg m h when -2 -1 temperature increased from 30 to 70 °C, and increased from 9.2 to 19.9 kg m h when the feed fl...

full text

A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation

More than 80% of ammonia (NH₃) in the steel manufacturing process wastewater is contributed from the coking wastewater, which is usually treated by biological processes. However, the NH₃ in the coking wastewater is typically too high for biological treatment due to its inhibitory concentration. Therefore, a two-stage process including a hollow fiber membrane contactor (HFMC) and a modified memb...

full text

Water Desalination by Membrane Distillation

Water is the most common substance in the world, however, 97% is seawater and only 3% is fresh water. The availability of water for human consumption is decreasing due to increasing the environmental pollution. According to the World Health Organisation (WHO), about 2.4 billion people do not have access to basic sanitation facilities, and more than one billion people do not have access to safe ...

full text

Full Nitrogen Recovery and Potable Water Production from Human Urine by Membrane Distillation

Human urine offers some interesting possibilities for ammonia and potable water recovery. Membrane distillation holds possible advantages over existing urine treatment technologies, specifically regarding ammonia recovery. It was shown that up to 95 m% of all ammonia present in hydrolyzed urine could be recovered by increasing the urine pH to 10.5 or higher within a period of 2 hours, with a ma...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  55- 64

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023