Fluoride Precipitation of Cu Over Fe in a Selected pH Window

Authors

  • S. E. Rezaei Departments of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
  • S. K. Sadrnezhaad Departments of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
Abstract:

Fe is an impurity in most leach liquors. Its coexistence with copper in leaching solution of chalcopyrite (CuFeS2) which is the most important mineral of copper creates major extraction problems. Hydrochloric acid dissolves both copper and iron during chloride leaching of this mineral. Separation of Fe from Cu is thus necessary to obtain pure copper. This paper presents a novel method for precipitation of Cu over Fe from mixed chloride acidic liquors. Hydrofluoric acid is used as the major unraveling agent. Kinetic studies show that a second-order CuCl2 precipitation reaction with a chemical rate constant of k = 0.416 L/mol prevails the process at the room temperature. For validation of the results, precipitate characterization by x-ray fluorescence (XRF) and x-ray diffraction (XRD) and solution analysis by atomic absorption spectrometry (ABS) are performed. Nitrogen presence is shown to help separation of iron from copper. The optimum value of pH (1.09) is achieved when nitrogen helps parting of 99 % iron II ions in the solution and sole deposition of copper II chloride precipitate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Effect of Temperature on Product Distribution over Fe-Cu-K Catalyst in Fischer-Tropsch Synthesis

The iron-based catalyst was prepared by a microemulsion method. The composition of the final nanosized iron catalyst, in terms of the atomic ratio, contains 100Fe/4Cu/2K. The experimental techniques of XRD, BET, TEM, and TPR were used to study the phase, structure, and morphology of the catalyst. Fischer-Tropsch synthesis (FTS) reaction test was performed in a fixed bed reactor under pressure o...

full text

FABRICATION AND SELECTED PROPERTIES OF MULTILAYER Fe/Cu SYSTEMS

M. Spilka, A. Kania, R. Nowosielski, Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland. A. Maciej, Silesian University of Technology, Department of Inorganic, Analytical Chemistry and Electrochemistry, Gliwice, Poland. The paper presents investigation results of the structure and selected physical properties of multilayer systems obtained by...

full text

Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases

Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles ...

full text

Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite

A filamentary composite elaborated by cold drawing was processed by High Pressure Torsion (HPT). The nanostructure resulting from this severe plastic deformation (SPD) was investigated thanks to scanning electron microscopy, transmission electron microscopy, X-ray diffraction and 3D atom probe. Although the mutual solubility of Cu and Fe is extremely low at room temperature in equilibrium condi...

full text

Co-Precipitation, Strength and Electrical Resistivity of Cu–26 wt % Ag–0.1 wt % Fe Alloy

Both a Cu-26 wt % Ag (Fe-free) alloy and Cu-26 wt % Ag-0.1 wt % Fe (Fe-doping) alloy were subjected to different heat treatments. We studied the precipitation kinetics of Ag and Cu, microstructure evolution, magnetization, hardness, strength, and electrical resistivity of the two alloys. Fe addition was incapable of changing the precipitation kinetics of Ag and Cu; however, it decreased the siz...

full text

Methanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts

Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 32  issue 3

pages  424- 429

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023