Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid
Authors
Abstract:
In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction of the nanoparticle, the diameter of the nanoparticle, aspect ratio of the duct and the duct bend angle on the hydrodynamic and thermal characteristics of the flow has been presented. It is observed that the heat transfer is augmented by replacing conventional fluid by Al2O3-water nanofluid. The nanoparticle volume fraction is found to be an important parameter to increase the heat transfer in the bend pipe. It is also observed that the thermo-hydraulic characteristics of the flow changes with the duct aspect ratio, and the heat transfer rate is improved with aspect ratio. The heat transfer with a 180o bend pipe is obtained to be higher than a 90o bend pipe at a particular value of volume fraction and Reynolds number. Moreover, the present computed Nusselt number for 180o bend pipe of rectangular cross-section has been validated with the existing literature. validated with the existing literature.
similar resources
Numerical investigation of heat transfer and laminar Water-Al2O3 nanofluid flow in a rectangular Rib-Microchannel
در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانهدار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسیهای این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانههای داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی د...
full textnumerical investigation of heat transfer and laminar water-al2o3 nanofluid flow in a rectangular rib-microchannel
0
full textStudy of Fluid Flow and Heat Transfer of AL2O3-Water as a Non-Newtonian Nanofluid through Lid-Driven Enclosure
Flow field and heat transfer of a nanofluid, whose non-Newtonian behavior has been demonstrated in the laboratory, in a square enclosure have been numerically modeled and investigated. To estimate the viscosity of nanofluid, experimental data of Hong and Kim, 2012 have been used, and a new model has been proposed. Finally, the obtained results have been compared to those of Newtonian behavior. ...
full textThree-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach
In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...
full textAnalysis of Fluid Dynamics and Heat Transfer in a Rectangular Duct with Staggered Baffles
This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vorti...
full textEntropy Generation and Heat Transfer Performances of Al2O3-Water Nanofluid Transitional Flow in Rectangular Channels with Dimples and Protrusions
Nanofluid has great potentials in heat transfer enhancement and entropy generation decrease as an effective cooling medium. Effects of Al2O3-water nanofluid flow on entropy generation and heat transfer performance in a rectangular conventional channel are numerically investigated in this study. Four different volume fractions are considered and the boundary condition with a constant heat flux i...
full textMy Resources
Journal title
volume 4 issue 2
pages 103- 115
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023