Flexural monitoring of carbon fiber/epoxy composite by acoustic emission

Authors

Abstract:

Carbon / epoxy composite is one of the most useful polymer matrix composites that has special properties such as high strength-to-weight ratio, high hardness, high corrosion resistance, Resistance to nuclear radiation has high consumption in different industries such as aerospace industry. Therefor monitoring of loading of this type of composite is important. In order to determine failure mechanisms, acoustic emission method has more performance than other non-destructive methods. In this research acoustic emission method was used to evaluate and monitoring of the carbon epoxy composite three point bending load. For this purpose bending behavior of composite and relationship between acoustic signals studied. Using both fast Fourier transform and wavelet transform method in this research, which led to the same result. Using FFT maximum frequency 140 KHZ was determined, that wavelet transform confirmed this result too. Time limits that events was occurred on the under load specimen, was monitored by online diagrams that obtained from acoustic system. Finally failure mechanisms of composite were confirmed by SEM pictures. Time limits and ascending progress of diagrams validates bending diagram.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Acoustic emission monitoring of composite containment systems

This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is mo...

full text

Health Monitoring for Composite under Low-Cycle Cyclic Loading, Considering Effects of Acoustic Emission Sensor Type

Composites have been widely used in the aerospace industry. Due to the requirement of a high safety for such structures, they could be considered for health monitoring. The acoustic emission approach is one of most effective methods for identifying damages in composites. In this article, standard specimens were made from carbon fibers and the epoxy resin, with the [03/902/...

full text

study of the effect of machining parameters on drilling of composite materials and monitoring of process by acoustic emission

drilling is one of the main machining processes carried out in the assembly stage of automobile manufacturing and aerospace components. generally, delamination is considered as a major problem during drilling of composite materials. in this paper, the effects of feed rate, cutting speed and drill point angle on thrust force and delamination factor have been studied by using full factorial desig...

full text

Cluster Analysis of Acoustic Emission Signals for Carbon/Epoxy Composite in Four-point Bending Test (RESEARCH NOTE)

Due to the extensive use of composites in various industries and the fact that defects reduce ultimate strength and efficiency during operation, detection of failures in composite parts is very important. The aim of this paper is to use Acoustic Emission (AE) non-destructive method in four-point bending test of carbon/epoxy composite to analyze and examine the failure mechanisms. This method is...

full text

Fabrication of carbon nanotubes field emission cathode by composite plating.

Carbon nanotubes (CNTs) have high aspect ratio and have great potential to be applied as the field emission cathode because of its large field enhancement factor. In this work, a high performance carbon nanotube field emission cathode (CNTFC) was fabricated by using a composite plating method. The CNTs were purified by acid solutions and then dispersed in electrobath with nickel ions at tempera...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  49- 62

publication date 2016-04-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023