Fixed point theorem for non-self mappings and its applications in the modular ‎space

Authors

  • A. ‎Razani Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, ‎Iran.
  • R. Moradi Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34149-16818, Qazvin, ‎Iran.
Abstract:

‎In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a continuous non-self contraction mapping and $S$ is continuous mapping such that $S(C)$ resides in a compact subset of $X_rho$, where $C$ is a nonempty and complete subset of $X_rho$, also $C$ is not bounded. Our result extends and improves the result announced by Hajji and Hanebally [A. Hajji and E. Hanebaly, Fixed point theorem and its application to perturbed integral equations in modular function spaces, Electron. J. Differ. Equ. 2005 (2005) 1-11]. As an application, the existence of a solution of a nonlinear integral equation on $C(I, L^varphi) $ is presented, where $C(I, L^varphi)$ denotes the space of all continuous function from $I$ to $L^varphi$, $L^varphi$ is the Musielak-Orlicz space and $I=[0,b] subset mathbb{R}$. In addition, the concept of quasi contraction non-self mapping in modular space is introduced. Then the existence of a fixed point of these kinds of mapping without $Delta_2$-condition is proved. Finally, a three step iterative sequence for non-self mapping is introduced and the strong convergence of this iterative sequence is studied. Our theorem improves and generalized recent know results in the ‎literature.‎

similar resources

fixed point theorem for non-self mappings and its applications in the modular ‎space

‎in this paper, based on [a. razani, v. rako$check{c}$evi$acute{c}$ and z. goodarzi, nonself mappings in modular spaces and common fixed point theorems, cent. eur. j. math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $t$ in the modular space $x_rho$ is presented. moreover, we study a new version of krasnoseleskii's fixed point theorem for $s+t$, where $t$ is a cont...

full text

A Fixed Point Theorem for Contractive Non-self Mappings

We establish a fixed point theorem for certain non-self mappings of contractive type which take a nonempty and closed subset of a complete metric space X into X.

full text

Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space

In this paper, we shall establish some fixed point theorems for mappings with the contractive  condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...

full text

Common fixed point theorem for nonexpansive type single valued mappings

The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...

full text

Coincident point and fixed point results for three self mappings in cone metric spaces

In this attempt we proved results on points of coincidence and common xed points for three selfmappings satisfying generalized contractive type conditions in cone metric spaces. Our results gen-eralizes some previous known results in the literature (eg. [5], [6])

full text

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  107- 117

publication date 2016-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023