Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Authors
Abstract:
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a general concept of Fisher’s linear discriminant analysis that extends the classical multivariate method to the case functional data. A bijective map is used to link a second order process to the reproducing kernel Hilbert space, generated by its within class covariance kernel. Finally a real data set related to Iranian weather data collected in 2008 is also treated.
similar resources
Kernel Fisher’s Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Space1
Kernel Fisher’s linear discriminant analysis (KFLDA) has been proposed for nonlinear binary classification (Mika, Rätsch, Weston, Schölkopf and Müller, 1999, Baudat and Anouar, 2000). It is a hybrid method of the classical Fisher’s linear discriminant analysis and a kernel machine. Experimental results (e.g., Schölkopf and Smola, 2002) have shown that the KFLDA performs slightly better in terms...
full textReal reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
full textKernel Fisher Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Spaces –Theory
Kernel Fisher discriminant analysis (KFDA) has been proposed for nonlinear binary classification. It is a hybrid method of the classical Fisher linear discriminant analysis and a kernel machine. Experimental results have shown that the KFDA performs slightly better in terms of prediction error than the popular support vector machines and is a strong competitor to the latter. However, there is v...
full textDistance Functions for Reproducing Kernel Hilbert Spaces
Suppose H is a space of functions on X. If H is a Hilbert space with reproducing kernel then that structure of H can be used to build distance functions on X. We describe some of those and their interpretations and interrelations. We also present some computational properties and examples.
full textSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
full textMy Resources
Journal title
volume 25 issue 2
pages 13- 17
publication date 2021-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023