Finite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process
Authors
Abstract:
Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage and heterogeneous densification for ceramic materials during the liquid phase sintering process, as a function of sintering time. For this purpose, three experimental configurations including midpoint deflection, sinter bending and free sintering test were designed; the finite element method are implemented by the CREEP user subroutine code in ABAQUS. The fair accordance between simulation results and experimental data reveals that the shear and bulk viscosity modulus as well as dynamic viscosity used in the simulation are near the real ones. The anisotropic shrinkage factor K_xy has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of slip casting is about 1.5 times larger than that of casting direction. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the density non-uniformity in the samples.
similar resources
Evaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure
The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...
full textLiquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering
Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaw...
full textDENSIFICATION AND MICROSTRUCTURE CHARACTERISTICS OF A PREALLOYED ALPHA BRASS POWDER PROCESSED BY LIQUID PHASE SINTERING
The rapidly solidified prealloyed alpha brass powder with a size range of 40 to 100 μm produced by water atomization process was consolidated using liquid phase sintering process. The relationships between sintering temperature, physic-mechanical properties and microstructural characteristics were investigated. Maximum densification was obtained at 930 °C, under 600 MPa compacting pressure,...
full textFinite Element Simulation of Liquid Phase Sintering with Tungsten Heavy Alloys
Densification and distortion of W-Ni-Fe tungsten heavy alloys during liquid phase sintering are modeled using constitutive laws of grain growth, densification, and deformation. The models are ‘‘calibrated’’ via carefully designed experiments to obtain the necessary parameters to enable modeling. Metallographic analysis of quenched samples is used to obtain grain size data as functions of time a...
full textsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
EFFECT OF SUPERSOLIDUS LIQUID PHASE SINTERING ON THE MICROSTRUCTURE AND DENSIFICATION OF THE Al-Cu-Mg PREALLOYED POWDER
Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sinte...
full textMy Resources
Journal title
volume 5 issue 3
pages 45- 52
publication date 2017-12-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023