Feasibility of Fabricating PAN/TiO2 Electrospinning Nanofibers with UV Protection Property
Authors
Abstract:
Introduction: The skin, can be exposed to harmful factors like ultraviolet radiation (UV). Exposure to this physical hazardous agent could be contributed to pigmentation, erythemas, early aging, skin cancer, and DNA damage. The aim of this study, therefore, was to fabricate the polyacrylonitrile (PAN) nanofibers with the UV protection property by the use of various concentrations of titanium dioxide (TiO2) nanoparticles. Material and Methods: The PAN nanofibers (10%wt) containing 0, 1, 5, 10 and 15% wt of TiO2 nanoparticles were produced using electrospinning method. The morphological propertis of nanofibers were studied by scanning electron microscopy (SEM) and the functional groups were investigated by Fourier transform infrared spectrophotometer (FTIR). The UV protection property of nanofibers was studied by measuring UV transmittance as well as calculating UV protection factor (UPF). Results: The results showed that the diameter and morphological characteristics of nanofibers are different at various concentrations of TiO2 and increasing the concentration of TiO2 has resulted to an increase in nanofibers diameter. The analysis of FTIR results showed that TiO2 nanoparticles have been successfully loaded on nanofibers for UV protection purposes. The findings clarified that nanofibers loaded with TiO2 could increase the UV protection property up to 15%. Conclusion: Totally, our findings show the successful fabrication of UV-protective nano webs using TiO2 nanoparticles. the new combination used in nano matcould protect employees from UV radiation.
similar resources
Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning
Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic ...
full textModeling Electrospinning of Nanofibers
A fast discrete model for the simulations of thin charged jets produced during the electrospinning process is derived, based on an efficient implementation of the boundary element method for the computation of electrostatic interactions of the jet with itself and with the electrodes. Short-range electrostatic forces are evaluated with slender-body analytical approximations, whereas a hierarchic...
full textProcedure for fabricating biofunctional nanofibers.
Electrospinning is an effective processing method for preparing nanofibers decorated with functional groups. Nanofibers decorated with functional groups may be utilized to study material-biomarker interactions i.e. act as biosensors with potential as single molecule detectors. We have developed an effective approach for preparing functional polymers where the functionality has the capacity of s...
full textUpward Needleless Electrospinning of Nanofibers
Polyacrylonitrile (PAN) nanofibers were prepared by a needleless electrospinning method using three rotating fiber generators, cylinder, disc and coil. The effects of the spinneret shape on the electrospinning process and resultant fiber morphology were examined. The disc spinneret needed the lowest voltage to initiate fiber formation, followed by the coil and cylinder. Compared to cylinder, th...
full textElectrospinning of cyclodextrin-pseudopolyrotaxane nanofibers.
Cyclodextrins (CDs) are distinctive molecules that can form noncovalent host–guest complexes with a variety of molecules to yield intriguing supramolecular structures. Electrospinning has gained enormous attention since this versatile technique enables production of multifunctional nanofibers made from various polymers, polymer blends, composites, and ceramics. Electrospun nanofibers containing...
full textMy Resources
Journal title
volume 11 issue 1
pages 151- 163
publication date 2021-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023