FATIGUE BEHAVIOUR OFA ROLLED AZ31 MAGNESIUM ALLOYS PREPARED BY EPAND BB CONDITIONS

author

Abstract:

Abstract: Rotating bending fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in laboratory air at ambient temperature. Fatigue strength and characteristic was evaluated and fracture mechanism was discussed on the basis fracture surface analysis. Electrical polishing (EP) as well as deep rolling (ball burnishing (BB)) U-notched specimens were performed on two groups of samples, to evaluate optimum conditions for fatigue life. The microstructure and tensile properties of roll cast (RC) Mg- 3% Al- 1% Zn (AZ31) was investigated. The fatigue strength of 107 cycles around 100 MPa for deep rolling while it was around 40 MPa for Electrical polishing. It was very important to understand the effect of (ball burnishing (BB)) conditions on the hardness of the surface through to the core. The two procedures improved the fatigue performance, but better improve in results were found in ball burnishing. The growth of small cracks initiated at the surface coincided with the FCP characteristic after allowing for crack closure for large cracks, but the operative fracture mechanisms were different between small and large cracks. At the subsurface crack initiation site, smooth facets were always present regardless of applied stress level.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Statistical analysis on static recrystallization texture evolution in cold-rolled AZ31 magnesium alloy sheet.

Cast AZ31B-H24 magnesium alloy, comprising Mg with 3.27 wt% Al and 0.96 wt% Zn, was cold rolled and subsequently annealed. Global texture evolutions in the specimens were observed by X-ray diffractometry after the thermomechanical processing. Image-based microstructure and texture for the deformed, recrystallized, and grown grains were observed by electron backscattered diffractometry. Recrysta...

full text

Fatigue Behaviour in Fine Grained Aluminium Alloys

The effects of alloy production method on microstructure and hence fatigue crack growth rate and fracture mechanism have been examined for a variety of fine-grained/high dispersoid Al-Li-Mg-Zr and Al-Li-Cu-Mg-Zr alloys. Microstructures have been assessed by scanning and transmission electron microcopy, together with electron back scattered diffraction pattern assessment. In these fine-grained/h...

full text

Fatigue behaviour and fractography of extruded AZ80 magnesium alloys in very high cycle regime

In order to investigate the fatigue properties of extruded magnesium alloy in very high-cycle regime, rotary bending fatigue test was performed in ambient atmosphere at room temperature using the hourglass shaped specimens of AZ80 alloys extruded (Fspecimen) and treated by an artificial aging after extrusion (T5-specimen). From the experimental results, both specimens show a clear step-wise S-N...

full text

Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

* Corresponding author. Tel: 34 1 3944348; Fax: 34 1 3944357 E-mail: [email protected] ABSTRACT X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50oC. Commercially pure magnesium, used as the reference material, reveale...

full text

A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to im...

full text

Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K

Rolled sheets of AZ31 Mg alloys were subjected to tensile testing at temperatures ranging from room temperature to 523K. The occurrence of grain-boundary sliding (GBS) at room temperature was demonstrated by the displacement of scribed lines across grain boundaries of deformed samples. Surface relief of deformed samples was measured by use of a scanning laser microscope. GBS strain was calculat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  30- 34

publication date 2010-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023