Extrinsic sphere and totally umbilical submanifolds in Finsler spaces
Authors
Abstract:
Based on a definition for circle in Finsler space, recently proposed by one of the present authors and Z. Shen, a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field, if and only if its circles coincide with circles of the ambient manifold. Finally, some examples of extrinsic sphere in Finsler geometry, particularly in Randers spaces are given.
similar resources
extrinsic sphere and totally umbilical submanifolds in finsler spaces
based on a definition for circle in finsler space, recently proposed by one of the present authors and z. shen, a natural definition of extrinsic sphere in finsler geometry is given and it is shown that a connected submanifold of a finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field, if and only if its circles coincide with circles of the ambient...
full textTotally geodesic submanifolds in Riemannian symmetric spaces
In the first part of this expository article, the most important constructions and classification results concerning totally geodesic submanifolds in Riemannian symmetric spaces are summarized. In the second part, I describe the results of my classification of the totally geodesic submanifolds in the Riemannian symmetric spaces of rank 2. To appear in the Proceedings volume for the conference V...
full textTotally Umbilical Hemi-Slant Submanifolds of Kaehler Manifolds
and Applied Analysis 3 in the normal bundle T⊥M, and AN is the shape operator of the second fundamental form. Moreover, we have g ANX, Y g h X,Y ,N , 2.4 where g denotes the Riemannian metric onM as well as the metric induced onM. The mean curvature vector H on M is given by
full textOn Totally Umbilical Hypersurfaces of Weakly Projective Symmetric Spaces
The object of the present paper is to study the totally umbilical hypersurfaces of weakly projective symmetric spaces and it is shown that the totally umbilical hypersurfaces of weakly projective symmetric space is also a weakly projective symmetric space.
full textAlmost quaternionic integral submanifolds and totally umbilic integral submanifolds
In literature (Kobayashi and Nomizu, 1963, 1969; Yano and Ako, 1972; Ishihara, 1974; Özdemir, 2006; Alagöz et al., 2012), almost complex and almost quaternionic structures have been investigated widely. These structures are special structures on the tangent bundle of a manifold. A detailed review can be found in Kirichenko and Arseneva (1997). Let us recall some basic facts and definitions from...
full textClassification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature
In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...
full textMy Resources
Journal title
volume 43 issue 2
pages 337- 347
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023