Extraction of Suitable Features for Breast Cancer Detection Using Dynamic Analysis of Thermographic Images

Authors

  • Binazir, Bita M.Sc. in Electrical Engineering, Electrical Engineering Dept., University of Zanjan, Zanjan, Iran
  • Fayazi, Ali Ph.D. in Control Engineering, Assistant Professor, Electrical Engineering Dept., Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Ghayoumi Zadeh , Hossein Ph.D. in Biomedical Engineering, Assistant Professor, Electrical Engineering Dept., Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Yargholi, Mostafa Ph.D. in Electrical Engineering, Associate Professor, Electrical Engineering Dept., University of Zanjan, Zanjan, Iran
Abstract:

Introduction: Thermography is a non-invasive imaging technique that can be used to diagnose breast cancer. In this study, a method was presented for the extraction of suitable features in dynamic thermographic images of breast. The extracted features can help classify thermographic images as cancerous or healthy. Method: In this descriptive-analytical study, the images were taken from the IC/UFF database. A total of 196 people, including 41 cancer patients and 155 healthy individuals were investigated. Each person had 10 thermographic images and in total, 1960 images were analyzed. The images were captured using the FLIR ThermaCam S45 camera. The proposed model was presented based on a series of breast thermographic images of an individual to extract 8 suitable features.  The extracted features included mean, standard deviation, entropy, kurtosis, homogeneity, energy, skewness, and variance. Results: The extracted features were evaluated by the classifiers including the decision tree, support vector machine, quadratic symmetric analysis, and K-nearest neighbor algorithm using the ten-fold cross validation. The accuracy and sensitivity were 99% and 99.33% for decision tree algorithm, 98.46% and 95.12% for support vector machine algorithm, 100% and 100%, and 99% and 97.56% for K-nearest neighbor algorithm. Conclusion: The results of this study showed that among the first-order statistical features, mean difference, skewness, entropy, and standard deviation are the most effective features which help to detect asymmetry. The features extracted by the proposed model can help classify the individuals into healthy or cancer-affected by thermal images.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

full text

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

full text

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  91- 101

publication date 2020-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023