Extended finite element simulation of crack propagation in cracked Brazilian disc

Authors

  • A. Baghbanan Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
  • M. Eftekhari Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
Abstract:

The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (X-FEM). This method is based upon the finite element method (FEM). In this method, the crack is modeled independently from the mesh. The results obtained show that the dimensionless SIFs for the pure modes I and II increase with increase in the crack length but the angle in which pure mode-II occurs decreases. For the mixed-mode loading, with increase in the crack angle, NI value decreases, while NII value increases to a maximum value and then decreases. The results obtained from the crack propagation examinations show that the crack angle has an important effect on the crack initiation angle. The crack initiation angle increases with increase in the crack angle. When the crack angle is zero, then the crack is propagated along its initial direction, whereas in the mixed-mode cases, the crack deviates from the initial direction, and propagates in a direction (approximately) parallel to the direction of maximum compressive load.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

extended finite element simulation of crack propagation in cracked brazilian disc

the cracked brazilian disc (cbd) specimen is widely used in order to determine mode-i/ii and mixed-mode fracture toughness of a rock medium. in this study, the stress intensity factor (sif) on the crack-tip in this specimen is calculated for various geometrical crack conditions using the extended-finite element method (x-fem). this method is based upon the finite element method (fem). in this m...

full text

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

full text

Extended Finite Element Method for Fretting Fatigue Crack Propagation

In this paper, the extended finite element method (X-FEM) is considered for the analysis of fretting fatigue problems. A two-dimensional implementation of the XFEM is carried out within the finite element software ABAQUS by means of user subroutines, and crack propagation in fretting fatigue problems is investigated. On utilizing the non-linear contact capabilities of this code, the numerical t...

full text

High Order Extended Finite Element Method for Cracked Domains

Computer simulation of fracture processes remains a challenge for many industrial modelling problems. In a classical finite element method, the non-smooth displacement near the crack tip is captured by refining the mesh locally. The number of degrees of freedom may drastically increase, especially in three dimensional applications. Moreover, the incremental computation of a crack growth needs f...

full text

Finite Element Modeling of Delamination Crack Propagation in Laminated Composites

Finite element analysis of the delamination crack propagation in laminated composites is presented. Fracture mechanics based Virtual Crack Closure Technique (VCCT), and the cohesive element technique, have been used to simulate the delamination initiation and propagation under Mode-I type loading. Detailed description of the parameter selection process for these two techniques with ABAQUS®/Stan...

full text

Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method

A numerical technique for modeling fatigue crack propagation of multiple coplanar cracks is presented. The proposed method couples the extended finite element method (X-FEM) [Int. J. Numer. Meth. Engng. 48 (11) (2000) 1549] to the fast marching method (FMM) [Level Set Methods & Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  95- 102

publication date 2015-02-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023