Existence of solutions for a variational inequality on the half-line
Authors
Abstract:
In this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals.
similar resources
existence of solutions for a variational inequality on the half-line
in this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. our approach is based on the non-smooth critical point theory for szulkin-type functionals.
full textA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
full textExistence of Solutions for m-point Boundary Value Problems on a Half-Line
Multipoint boundary value problems BVPs for second-order differential equations in a finite interval have been studied extensively and many results for the existence of solutions, positive solutions, multiple solutions are obtained by use of the Leray-Schauder continuation theorem, Guo-Krasnosel’skii fixed point theorem, and so on; for details see 1–4 and the references therein. In the last sev...
full textMultiplicity of solutions for impulsive differential equation on the half-line via variational methods
In this paper, the existence of solutions for a second-order impulsive differential equation with two parameters on the half-line is investigated. Applying variational methods, we give some new criteria to guarantee that the impulsive problem has at least one classical solution, three classical solutions and infinitely many classical solutions, respectively. Some recent results are extended and...
full textExistence of Positive Solutions for Multipoint Boundary Value Problem on the Half-Line with Impulses
Impulsive differential equations are a basic tool to study evolution processes that are subjected to abrupt changes in their state. For instance, many biological, physical, and engineering applications exhibit impulsive effects see 1–3 . It should be noted that recent progress in the development of the qualitative theory of impulsive differential equations has been stimulated primarily by a num...
full textA Remark on Gwinner’s Existence Theorem on Variational Inequality Problem
Gwinner (1981) proved an existence theorem for a variational inequality problem involving an upper semicontinuous multifunction with compact convex values. The aim of this paper is to solve this problem for a multifunction with open inverse values.
full textMy Resources
Journal title
volume 43 issue 1
pages 223- 237
publication date 2017-02-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023