Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
author
Abstract:
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
similar resources
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
full textExistence and uniqueness results for a nonlinear differential equations of arbitrary order
This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary orders. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also presented.
full textExistence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations
and Applied Analysis 3 Thus, we have E sup t∈[t0 ,T] xn+1 (t) − xn (t) 2 ≤ 3(L 2 1 E sup t∈[t0,T] xn (t) − xn−1 (t) 2 + (T − t0) 2 L 2 E sup t∈[t0 ,T] xn (t) − xn−1 (t) 2
full textExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
full textExistence and Multiplicity of Weak Solutions for a Class of Degenerate Nonlinear Elliptic Equations
The goal of this paper is to study a nonlinear elliptic equation in which the divergence form operator −div(a(x,∇u)) is involved. Such operators appear in many nonlinear diffusion problems, in particular in the mathematical modeling of non-Newtonian fluids (see [5] for a discussion of some physical background). Particularly, the p-Laplacian operator −div(|∇u|p−2∇u) is a special case of the oper...
full textMy Resources
Journal title
volume 43 issue 7
pages 2393- 2410
publication date 2017-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023