Examples of non-quasicommutative semigroups decomposed into unions of groups
Authors
Abstract:
Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied the decomposition of quasicommutative semigroups where, he proved that: a regular quasicommutative semigroup is decomposable into the union of groups. The converse of this result is a natural question. Obviously, if a semigroup $S$ is decomposable into a union of groups then $S$ is regular so, the aim of this paper is to give examples of non-quasicommutative semigroups which are decomposable into the disjoint unions of groups. Our examples are the semigroups presented by the following presentations: $$pi_1 =langle a,bmid a^{n+1}=a, b^3=b, ba=a^{n-1}brangle,~(ngeq 3),$$ $$pi_2 =langle a,bmid a^{1+p^alpha}=a, b^{1+p^beta}=b, ab=ba^{1+p^{alpha-gamma}}rangle$$where, $p$ is an odd prime, $alpha, beta$ and $gamma$ are integers such that $alpha geq 2gamma$, $beta geq gamma geq 1$ and $alpha +beta > 3$.
similar resources
examples of non-quasicommutative semigroups decomposed into :union:s of groups
decomposability of an algebraic structure into the :union: of its sub-structures goes back to g. scorza's theorem of 1926 for groups. an analogue of this theorem for rings has been recently studied by a. lucchini in 2012. on the study of this problem for non-group semigroups, the first attempt is due to clifford's work of 1961 for the regular semigroups. since then, n.p. mukherjee in ...
full textcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولa study of translation of english litrary terms into persian
چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...
15 صفحه اولcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولEmbedding Locally Compact Semigroups into Groups
Let X, Y, Z be topological spaces. A function F :X × Y → Z is called jointly continuous if it is continuous from X × Y with the product topology to Z . It is said to be separately continuous if x 7→ F (x, y):X → Z is continuous for each y ∈ Y and y 7→ F (x, y):Y → Z is continuous for each x ∈ X . A semitopological semigroup is a semigroup S endowed with a topology such that the multiplication f...
full textAutomaton semigroups: New constructions results and examples of non-automaton semigroups
This paper studies the class of automaton semigroups from two perspectives: closure under constructions, and examples of semigroups that are not automaton semigroups. We prove that (semigroup) free products of finite semigroups always arise as automaton semigroups, and that the class of automaton monoids is closed under forming wreath products with finite monoids. We also consider closure under...
full textMy Resources
Journal title
volume 42 issue 2
pages 483- 487
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023