Examples of non-quasicommutative semigroups decomposed into unions of groups

Authors

  • H. Doostie Department of Mathematics, Tehran Science and Research Branch, Islamic Azad University, P.O. Box 14515/1775, Tehran, Iran.
  • N. Hosseinzadeh Department of Mathematics, Tehran Science and Research Branch, Islamic Azad University, P.O. Box 14515/1775, Tehran, Iran.
Abstract:

Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied the decomposition of quasicommutative semigroups where, he proved that: a regular quasicommutative semigroup is decomposable into the union of groups. The converse of this result is a natural question. Obviously, if a semigroup $S$ is decomposable into a union of groups then $S$ is regular so, the aim of this paper is to give examples of non-quasicommutative semigroups which are decomposable into the disjoint unions of groups. Our examples are the semigroups presented by the following presentations: $$pi_1 =langle a,bmid a^{n+1}=a, b^3=b, ba=a^{n-1}brangle,~(ngeq 3),$$ $$pi_2 =langle a,bmid a^{1+p^alpha}=a, b^{1+p^beta}=b, ab=ba^{1+p^{alpha-gamma}}rangle$$where, $p$ is an odd prime, $alpha, beta$ and $gamma$ are integers such that $alpha geq 2gamma$, $beta geq gamma geq 1$ and $alpha +beta > 3$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

examples of non-quasicommutative semigroups decomposed into :union:s of groups

decomposability of an algebraic structure into the :union: of its sub-structures goes back to g. scorza's theorem of 1926 for groups. an analogue of this theorem for rings has been recently studied by a. lucchini in 2012. on the study of this problem for non-group semigroups, the first attempt is due to clifford's work of 1961 for the regular semigroups. since then, n.p. mukherjee in ...

full text

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

a study of translation of english litrary terms into persian

چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...

15 صفحه اول

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

Embedding Locally Compact Semigroups into Groups

Let X, Y, Z be topological spaces. A function F :X × Y → Z is called jointly continuous if it is continuous from X × Y with the product topology to Z . It is said to be separately continuous if x 7→ F (x, y):X → Z is continuous for each y ∈ Y and y 7→ F (x, y):Y → Z is continuous for each x ∈ X . A semitopological semigroup is a semigroup S endowed with a topology such that the multiplication f...

full text

Automaton semigroups: New constructions results and examples of non-automaton semigroups

This paper studies the class of automaton semigroups from two perspectives: closure under constructions, and examples of semigroups that are not automaton semigroups. We prove that (semigroup) free products of finite semigroups always arise as automaton semigroups, and that the class of automaton monoids is closed under forming wreath products with finite monoids. We also consider closure under...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 2

pages  483- 487

publication date 2016-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023