Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
Authors
Abstract:
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
similar resources
exact solutions of distinct physical structures to the fractional potential kadomtsev-petviashvili equation
in this paper, exp-function and (g′/g)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. as a results, some new exact traveling wave solutions are obtained.
full textLump solutions to the Kadomtsev–Petviashvili equation
Article history: Received 31 March 2015 Received in revised form 18 June 2015 Accepted 30 June 2015 Available online 2 July 2015 Communicated by R. Wu
full textKadomtsev-Petviashvili equation
Here u = u(x, y, t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and σ2 = ±1. The case σ = 1 is known as the KPII equation, and models, for instance, water waves with small surface tension. The case σ = i is known as the KPI equation, and may be used to model waves in thin films with high surfa...
full textNew Solitons and Periodic Solutions for the Kadomtsev-petviashvili Equation
In this paper, the sine-cosine, the standard tanh and the extended tanh methods has been used to obtain solutions of the KadomstevPetviashvili(KP) equation. New solitons solutions and periodic solutions are formally derived. The change of parameters, that will drastically change characteristics of the equation, is examined.
full textSoliton solutions of the Kadomtsev-Petviashvili II equation
We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation by investigating the Wronskian form of its tau-function. We show that, in addition to previously known line-soliton solutions, this class also contains a large variety of new multi-soliton solutions, many of which exhibit nontrivial spatial interaction patterns. We also show that, in general, suc...
full textoliton solutions of the Kadomtsev-Petviashvili II equation
We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II KPII equation by investigating the Wronskian form of its tau-function. We show that, in addition to the previously known line soliton solutions of KPII, this class also contains a large variety of multisoliton solutions, many of which exhibit nontrivial spatial interaction patterns. We also show that, in general...
full textMy Resources
Journal title
volume 2 issue 1
pages 26- 36
publication date 2014-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023