Exact solutions of a linear fractional partial differential equation via characteristics method

Authors

  • Elham Lashkarian Department of Mathematics, Shahrood University of Technology, Shahrood, Semnan, Iran
  • Seyed Reza Hejazi Department of Mathematics, Shahrood University of Technology, Shahrood, Semnan, Iran
Abstract:

‎In recent years‎, ‎many methods have been studied for solving differential equations of fractional order‎, ‎such as Lie group method, ‎invariant subspace method and numerical methods‎, ‎cite{6,5,7,8}‎. Among this‎, ‎the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order‎. In this paper we apply this method for solving a family of linear (2+1)-dimensional FDE of multi order ‎$‎‎alpha,beta$ and ‎‎$gamma‎‎$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

full text

exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...

full text

Exact solutions for fractional partial differential equations by an extended fractional Riccati sub-equation method

In this paper, based on the fractional Riccati equation, we propose an extended fractional Riccati sub-equation method for solving fractional partial differential equations. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By a proposed variable transformation, certain fractional partial differential equations are turned into fractional ordinary di...

full text

Exact Solutions for Fractional Partial Differential Equations by Projective Riccati Equation Method

In this paper, the projective Riccati equation method is applied to find exact solutions for fractional partial differential equations in the sense of modified RiemannLiouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the vali...

full text

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

full text

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  12- 18

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023