Evaluation of monthly gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU over Khuzestan province
Authors
Abstract:
Deficiency and inappropriate distribution of reengage station is one of challenges faced by researchers in hydrology and climate science. In this research, evaluate the applicability of four gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU as a supplement or substitute for ground data in a monthly time scales. This assessment was done by comparison with observational data and statistical methods. To evaluate the ability of precipitation estimation of these four product used Pearson correlation coefficient (CORR), bias (BIAS), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NRMSE) and model efficiency coefficient (EF). This statistical index extracted as zoning and map for the province. The result showed that ERA-Interim, PERSIANN-CDR and CRU products are in good agreement with observational data, and the monthly precipitation trend is estimated by little error, while PERSIANN-CCS was unsuccessful in estimating precipitation in the province and has poor reliability. In some parts of the province, the PERSIANN-CDR had a high reliability, but in total, the lowest error range and the highest reliability were obtained from the four satellite data sources for ERA-Interim precipitation and in case of shortage it can be used as an auxiliary or alternative data source.
similar resources
Evaluation of PERSIANN-CDR for Meteorological Drought Monitoring over China
In this paper, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) is analyzed for the assessment of meteorological drought. The evaluation is conducted over China at 0.5 ̋ spatial resolution against a ground-based gridded China monthly Precipitation Analysis Product (CPAP) from 1983 to 2014 (32 years). The Standardized Pr...
full textEvaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodit and Satellite Precipitation Persiann-cdr In Khuzestan Province
One of the most important Limitation General Circulation Models , Large scale are being simulation of climatic variables. So should With Various method are downscaled, The ability to have identified a study area. Choose a suitable GCM model for the study area Very important role In the simulation parameter (precipitation) is intended for future. In this research of CMIP5 Models Contains BCC-CS...
full textOn an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation
By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud pat...
full textمقایسه و ارزیابی بارش برآورد شده توسط مدلهای ERA-Interim، PERSIANN-CDR و CHIRPS در بالادست سد مارون
بارش یک جزء اصلی چرخه هیدرولوژیک است که دارای تغییرات قابلتوجهی در مکان و زمان میباشد و نبود دادههای مناسب این پارامتر سبب ایجاد مشکل در پیشبینیهای هیدرولوژیک میگردد. ازآنجاییکه دادههای ماهوارهای-بارانسنجی و دادههای بازتحلیل راهحل جدیدی از برآورد میزان بارش با تنوع مکانی و زمانی ارائه میدهند و مشکلات ناشی از کمبود دادهها و کیفیت نامناسب آنها را برطرف میکند، این مطالعه به بررسی د...
full textبررسی کارآیی تولیدات PERSIANN و PERSIANN-CDR در برآورد بارش مناطق نیمهخشک زاگرس
بارندگی یکی از مهمترین عامل های تاثیرگذار در تراکم و درصد تاج پوششگیاهی، فرسایش و مخاطرات طبیعی است و برآورد آن بهمنظور مدیریت منابع آب دارای اهمیت است. به علت نبود دسترسی به برخی مناطق از جمله مناطق کوهستانی، مناطق خشک و نیمه خشک و بیابانی و نیز عدم پوشش کامل مکانی و زمانی بارندگی، محصولات ماهوارهای به عنوان جایگزین معرفی شدهاند. در پژوهش حاضر، بهمنظور بررسی کارآیی تولیدات PERSIANN و PER...
full textMonitoring Rainfall Patterns in the Southern Amazon with PERSIANN-CDR Data: Long-Term Characteristics and Trends
Satellite-derived estimates of precipitation are essential to compensate for missing rainfall measurements in regions where the homogeneous and continuous monitoring of rainfall remains challenging due to low density rain gauge networks. The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Climate Data Record (PERSIANN-CDR) is a relatively new product (...
full textMy Resources
Journal title
volume 7 issue 18
pages 69- 82
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023