Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Authors

  • Pourfallah, Tayyeb Associate Professor, Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
  • Seifi Makrani, Danial PhD Student in Medical Physics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced in heterogeneities such as the lung. In this study, the dose distribution of treatment planning system was compared with Monte Carlo calculations in both homogeneous and heterogeneous tissues. Materials and methods: Three dimensional planning composed of four fields were done on the CT images using the CorPLAN TPS of a SIEMENS PRIMUS linac. EGSnrc Monte Carlo simulation code was used for the same conditions. The dose distributions obtained from Monte Carlo simulation and the TPS were compared using PDD curve and Dose Difference Percentage index obtained from the two modes. Results: According to the findings, the error rate from the TPS was less than 3% in the homogeneous tissue, whereas the error in the heterogeneous tissue was higher than the standard value (more than 5%). Conclusion: The accuracy of CorPLAN TPS at homogeneous tissue is more than that in the heterogeneous tissue and this should be considered in the clinic. This study suggests that the Monte Carlo code can be used to simulate and estimate the dose distribution in radiotherapy, and in cases where the practical measurement of some dosimetric parameters is impossible or difficult, this code can be used for prediction and optimization of treatment plans.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Evaluation of glandular dose in mammography in the presence of breast cyst using Monte Carlo simulation

Introduction: Average glandular dose (AGD), entrance skin air kerma (ESAK) and normalized glandular dose (DgN) are the main dosimetric quantities in mammography. In this study, DgN is evaluated in the presence of breast cyst, which is a common disease among women and the influence of size, number and location of the cysts on the DgN is investigated. Materials and Meth...

full text

Evaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code

Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide.   Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...

full text

Investigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method

Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanopart...

full text

Evaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer.

We evaluated the four-dimensional (4D) dose to a moving target by a Monte Carlo dose calculation algorithm in stereotactic body radiation therapy (SBRT) planning based on the isocenter dose prescription. 4D computed tomography scans were performed for 12 consecutive patients who had 14 tumors. The gross tumor volume (GTV) and internal target volume (ITV) were contoured manually, and the plannin...

full text

Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code

Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...

full text

Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 182

pages  41- 49

publication date 2020-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023