Evaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors

  • Fatemeh Taati-Asil Dear Editorial Board: Enclosed is a manuscript to, Dear Editorial Board: Enclosed is a manuscript to
Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the ceramic body during sintering process including the viscose flow deformation, anisotropic shrinkage, heterogeneous densification, as well as sintering stress, have significant influence on the both final body dimensional precision and densification process. In this paper, the numerical-experimental method has been developed to study both rheological and thermal behavior of hard porcelain ceramic body during liquid phase sintering process. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. The finite element method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. Densification results confirmed that the bulk viscosity was well-defined with relative density. It has been shown that the shrinkage along the normal axis of slip casting is about 1.5 times larger than that of casting direction. The stress analysis proved that the sintering stress is more than the hydrostatic stress during the entire sintering time so, the sintering process occurs completely. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity. Dilatometry, SEM, XRD investigations as well as bulk viscosity simulation results confirmed that the “mullitisation plateau” was presented as a very little expansion at the final sintering stage, because of the highly amount of mullite formation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Finite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process

Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...

full text

DENSIFICATION AND MICROSTRUCTURE CHARACTERISTICS OF A PREALLOYED ALPHA BRASS POWDER PROCESSED BY LIQUID PHASE SINTERING

The rapidly solidified prealloyed alpha brass powder with a size range of 40 to 100 μm produced by water atomization process was consolidated using liquid phase sintering process. The relationships between sintering temperature, physic-mechanical properties and microstructural characteristics were investigated. Maximum densification was obtained at 930 °C, under 600 MPa compacting pressure,...

full text

Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaw...

full text

EFFECT OF SUPERSOLIDUS LIQUID PHASE SINTERING ON THE MICROSTRUCTURE AND DENSIFICATION OF THE Al-Cu-Mg PREALLOYED POWDER

Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sinte...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  14- 24

publication date 2017-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023