Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, Yttria-stabilized Zirconia, Magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces are examined. Comparison between simulated results for aluminum, steel and cast iron materials are reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for Magnesia-stabilized zirconia, Yttria-stabilized Zirconia, Mullite and Alumina coated materials.
similar resources
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Evaluation of different materials used for post construction and stress distribution in the radicular dentin using finite element method
Evaluation of different materials used for post construction and stress distribution in the radicular dentin using finite element method Dr. S. Nokar *- Dr. AS. Mostafavi ** *Assistant Professor of Prosthodontics Dept., Faculty of Dentistry, Tehran University / Medical Sciences. **Resident of Prosthodontics Dept., Faculty of Dentistry, Tehran University / Medical Sciences. Abstract Background a...
full textInitial blank design of deep drawn orthotropic materials using inverse finite element method
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations between material points of initial blank and final shape, an equation system was obt...
full textThe Finite Element Method for Porous Materials
To reduce the noise and vibration perturbations, it is beneficial to use the dissipative properties of poroelastic materials. These materials are generally not used alone, but rather inserted in composite mechanical assemblies made of elastic structures, poroelastic materials and air insertions. If these structures are assemblies of layers of materials, they are called multilayer complexes. If ...
full textEvaluation of Disc Cutter Performance in Rock Cutting Process Using 3D Finite Element Method
Today, numerical simulation can be used as a suitable tool to measure large quantities that are very expensive and, in some cases, impossible to measure. One of the important issues in predicting rock mass boreability in excavation with full face tunnel boring machines is estimating the discchr('39')s forces for rock cutting. For this purpose, the linear cutting test is employed. However, limi...
full textMy Resources
Journal title
volume 9 issue 2
pages 2942- 2948
publication date 2019-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023