Euler-Lagrange equations and geometric mechanics on Lie groups with potential
author
Abstract:
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a rigid body with a fixed point in the gravitational field. This Mechanical systems is usually know as symmetric heavy top. Then we show that the extracted equations by this theory coincide with the known equations of heavy top. Finally, as an infinite dimensional example, we study the Camassa-Holm equations on Bott-Virasoro group at the presence of potential. Bott-Virasoro group is the product of the group of diffeomorphisms of the circle of Sobolev class by the real line and by a potential on a Lie group G we mean a differentiable function from G to the real line R.
similar resources
Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups
The geodesic motion on a Lie group equipped with a left or right invariant Riemannian metric is governed by the Euler-Arnold equation. This paper investigates conditions on the metric in order for a given subgroup to be totally geodesic. Results on the construction and characterisation of such metrics are given. The setting works both in the classical finite dimensional case, and in the categor...
full textEuler-lagrange Equations
. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...
full textThe Reduced Euler-Lagrange Equations
Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...
full textOn reflection symmetry and its application to the Euler-Lagrange equations in fractional mechanics.
We study the properties of fractional differentiation with respect to the reflection symmetry in a finite interval. The representation and integration formulae are derived for symmetric and anti-symmetric fractional derivatives, both of the Riemann-Liouville and Caputo type. The action dependent on the left-sided Caputo derivatives of orders in the range (1,2) is considered and we derive the Eu...
full textApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
full textOn the metrics and euler-lagrange equations of computational anatomy.
This paper reviews literature, current concepts and approaches in computational anatomy (CA). The model of CA is a Grenander deformable template, an orbit generated from a template under groups of diffeomorphisms. The metric space of all anatomical images is constructed from the geodesic connecting one anatomical structure to another in the orbit. The variational problems specifying these metri...
full textMy Resources
Journal title
volume 5 issue 21
pages 77- 84
publication date 2019-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023