Equivalence of K-functionals and modulus of smoothness for fourier transform

Authors

  • M. El Hamma Department of Mathematics, Faculty of Science An Chock, University Hassan II, Casablanca, Morocco
  • R. Daher Department of Mathematics, Faculty of Science An Chock, University Hassan II, Casablanca, Morocco
Abstract:

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

equivalence of k-functionals and modulus of smoothness for fourier transform

in hilbert space l2(rn), we prove the equivalence between the mod-ulus of smoothness and the k-functionals constructed by the sobolev space cor-responding to the fourier transform. for this purpose, using a spherical meanoperator.

full text

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

On stability of reconstruction from Fourier transform modulus

We describe a new method of frequency-domain decon-volution when the kernel has no spectral inverse. Discrete frequencyinterpolation is used to avoid zero-valued frequency samples. The al-gorithm does not suffer from the spectral singularities of the originalkernel, its complexity is proportional to the fast Fourier transform,and a comparative noise study showed improved per...

full text

Signal Reconstruction From The Modulus of its Fourier Transform

The problem of signal reconstruction from the magnitude of its Fourier transform arises in many applications where the wave phase is apparently lost or impractical to measure. One example of such an application that has attracted a substantial number of researchers in recent years is Coherent Diffraction Imaging (CDI). CDI is a “lens-less” technique for 2D and 3D nano-objects reconstruction wit...

full text

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  38- 43

publication date 2012-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023