Entropy of infinite systems and transformations

author

  • Massoud Amini Department of Mathematics Tarbiat Modares University Tehran, Iran
Abstract:

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with infinite invariant measures. The three main extensions are Parry, Krengel, and Poisson entropies. In this survey, we shortly overview the history of entropy, discuss the pioneering notions of Shannon and later contributions of Kolmogorov and Sinai, and discuss in somewhat more details the extensions to infinite systems. We compare and contrast these entropies with each other and with the entropy on finite systems.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Predictability, Entropy and Information of Infinite Transformations

We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...

full text

A Characterization of the Entropy--Gibbs Transformations

Let h be a finite dimensional complex Hilbert space, b(h)+ be the set of all positive semi-definite operators on h and Phi is a (not necessarily linear) unital map of B(H) + preserving the Entropy-Gibbs transformation. Then there exists either a unitary or an anti-unitary operator U on H such that Phi(A) = UAU* for any B(H) +. Thermodynamics, a branch of physics that is concerned with the study...

full text

a characterization of the entropy--gibbs transformations

let h be a finite dimensional complex hilbert space, b(h)+ be the set of all positive semi-definite operators on h and phi is a (not necessarily linear) unital map of b(h) + preserving the entropy-gibbs transformation. then there exists either a unitary or an anti-unitary operator u on h such that phi(a) = uau* for any b(h) +. thermodynamics, a branch of physics that is concerned with the study...

full text

Entropy exchange for infinite-dimensional systems

In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein's inequality, the subadditivity and the triangle inequality about the en...

full text

Nonanalyticities of entropy functions of finite and infinite systems.

In contrast to the canonical ensemble where thermodynamic functions are smooth for all finite system sizes, the microcanonical entropy can show nonanalytic points also for finite systems. The relation between finite and infinite system nonanalyticities is illustrated by means of a simple classical spinlike model which is exactly solvable for both finite and infinite system sizes, showing a phas...

full text

Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  27- 33

publication date 2019-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023