Entropy Generation Analysis of EG – Al2O3 Nanofluid Flows through a Helical Pipe

author

  • A. Zamzamian Materials and Energy Research Center (MERC), Karaj, I. R. Iran
Abstract:

fluids for various industrial applications because of their excellent thermal performance. This study analytically and experimentally examines the effects of nanoparticle dispersion on the entropy generation of EG–Al2O3 nanofluid flows through a helical pipe as a heat exchanger under constant wall heat flux thermal boundary condition in laminar regime. It is found that adding nanoparticles improves the thermal performance of EG–Al2O3 flow with Re numbers less than 3700. On the other hand the results shows that adding the 5% by volume Al2O3 nanoparticles in the EG in Dean numbers less than 100 can decrease the entropy generation by 4.511%. Also it is shown that adding nanoparticles leads to increase entropy generation in the cases that fluid flow  (pressure drop) irreversibility is dominant. Moreover, optimum conditions of radius ratio and Dean Numberfor laminar nanofluid flow are obtained

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

entropy generation analysis of eg – al2o3 nanofluid flows through a helical pipe

fluids for various industrial applications because of their excellent thermal performance. this study analytically and experimentally examines the effects of nanoparticle dispersion on the entropy generation of eg–al2o3 nanofluid flows through a helical pipe as a heat exchanger under constant wall heat flux thermal boundary condition in laminar regime. it is found that adding nanoparticles impr...

full text

Factor Effect Estimation in the Convective Heat Transfer Coefficient Enhancement of Al2O3/EG Nanofluid in a Double-pipe Heat Exchanger

The forced convective heat transfer (CHT) coefficient of a particular nanofluid, Al2O3 nanoparticles-ethylene glycol (EG) mixture, was investigated experimentally in a double-pipe heat exchanger. The nanofluid Nusselt number for different nanoparticles’ concentrations as well as various operating temperatures was measured to be increased up to 23.7% using 1.0% wt of nanoparticles. The significa...

full text

Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate

In this article, entropy generation on viscous nanofluid through a horizontal Riga plate has been examined. The present flow problem consists of continuity, linear momentum, thermal energy, and nanoparticle concentration equation which are simplified with the help of Oberbeck-Boussinesq approximation. The resulting highly nonlinear coupled partial differential equations are solved numerically b...

full text

Investigation of Entropy Generation Through the Operation of an Unlooped Pulsating Heat Pipe

In the present study, an unlooped pulating heat pipe has been considered with two liquid slugs and three neighboirng vapor plugs.The governing equations such as momentum, energy and mass equations are solved explicitly except the energy equation of liquid slugs.The aim of the present study is to calculate the entropy generation through the performance of a pulsating heat pipe. Additionally, the...

full text

Entropy Generation in Laminar Fluid Flow through a Circular Pipe

A numerical solution to the entropy generation in a circular pipe is made. Radial and axial variations are considered. Navier-Stokes equations in cylindrical coordinates are used to solve the velocity and temperature fields. Uniform wall heat flux is considered as the thermal boundary condition. The distribution of the entropy generation rate is investigated throughout the volume of the fluid a...

full text

Analysis of Heat Transfer and Entropy Generation of TiO2- Water Nanofluid Flow in a Pipe under Transition

Single and multi-phase numerical simulations are carried out to investigate the heat transfer and entropy generation behaviour of transitional flow of TiO2 H2O nanofluid in a circular pipe. Results reveal that the small diameter of nanoparticles has the highest heat transfer rate for χ = 6% and the TiO2-water nanofluid shows higher heat transfer rate using multi-phase model compared to that of ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 2

pages  103- 110

publication date 2014-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023