Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli

Authors

  • Sakda Yainoy Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
  • Virapong Prachayasittikul Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
  • Warawan Eiamphungporn Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
Abstract:

Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic activity of hSOD1 in E. coli was investigated in the presence and absence of Cu2+.Materials and Methods: pETDuet-1-hSOD1 and pETDuet-1-hCCS-hSOD1 were constructed and individually transformed into E. coli strain BL21(DE3). The recombinant hSOD1 was expressed and purified using immobilized metal affinity chromatography. The yield and specific activity of hSOD1 in all conditions were studied.Results: Co-expression with hCCS increased hSOD1 solubility at 37°C, but this effect was not observed at 25°C. Notably, the specific activity of hSOD1 was enhanced by 1.5 fold and greater than 3 fold when co-expressed with hCCS at 25°C with and without Cu2+ supplement, respectively. However, the chaperone co-expression did not significantly increase the yield of hSOD1 comparable to the expression of hSOD1 alone. Conclusions: This study is the first report demonstrating a potential use of hCCS for heterologous production of hSOD1 with high enzymatic activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli

BACKGROUND Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity. OBJECTIVES The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic activit...

full text

Escherichia coli expresses a copper- and zinc-containing superoxide dismutase.

A mutant of Escherichia coli, unable to produce manganese- or iron-containing superoxide dismutase (SOD), was found to contain modest levels of an SOD that was judged to be a copper- and zinc-containing SOD on the basis of inhibition by cyanide and inactivation by either H2O2 or diethyldithiocarbamate. Moreover, the diethyldithiocarbamate-inactivated enzyme could be reactivated with Cu(II), and...

full text

A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis.

The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flan...

full text

Human copper-zinc superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants.

An Escherichia coli double mutant, sodAsodB, that is deficient in both bacterial superoxide dismutases (Mn superoxide dismutase and iron superoxide dismutase) is unable to grow on minimal medium in the presence of oxygen and exhibits increased sensitivity to paraquat and hydrogen peroxide. Expression of the evolutionarily unrelated eukaryotic CuZn superoxide dismutase in the sodAsodB E. coli mu...

full text

Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets

Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...

full text

Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 4

pages  243- 249

publication date 2016-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023