Enhanced of Nano-mechanical Properties of NiTi Alloy by Applied Nanostructured Tantalum Nitride Coating with Magnetron Sputtering method

author

  • ,
Abstract:

    Nowadays, suitable protective properties of tantalum nitride coatings, such as hardness, abrasion resistance and high corrosion resistance lead to increasing its application in medical engineering and improving the biological behavior of titanium and its alloys. In this research, nanostructured tantalum nitride coating was applied on the NiTi alloy by magnetron sputtering method. Then, the phase, structural and morphological properties of coating were investigated by using XPS, FESEM, AFM, respectively, as well as the nanomechanical properties of the coating were evaluated by using Nano-scanning and nano-scratch methods in different loads.     The results indicate that applying the uniform, homogeneous and crack free tantalum nitride coating with a thickness of 1050 nm. The hardness and elastic modulus of coating is 12.6 and 87.4 GPa under the applied force of 1000 μm and the penetration depth of 91 nm, respectively, which resulted in enhancing the hardness of NiTi alloy surface, about 34%. The coefficient of friction is 0.28 and the dominated wear mechanism of nanostructured tantalum nitride coating is abrasive wear with shearing mechanism.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The tribological properties of Cu-Ni3Al-MoS2 composite coating deposited by magnetron sputtering

In industrial applications, most materials are exposed to wear and friction because multiple conditions are used. However, the tribological properties of these materials can be improved with different techniques. One such technique that improves the frictional property of a surface is the use of self-lubricating coatings. In this study, multicomponent coatings of nominal composition Cu-Ni3Al-Mo...

full text

Influence of aging temperature on phase transformation and mechanical behavior of NiTi thin films deposited by magnetron sputtering technique

In this study, NiTi thin films were deposited on the glass and NaCl substrates by means of magnetron sputtering method. The influence of aging temperature, over the range 300-500 oC, on phase transformation and mechanical properties of the sputtered NiTi thin films were studied by differential scanning calorimetry (DSC) and nano-indentation assay, respectively. The DSC curves showed that the ag...

full text

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

full text

Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering

TaN thin film is an attractive interlayer as well as a diffusion barrier layer in [FeN/TaN]n multilayers for the application as potential write-head materials in high-density magnetic recording. We synthesized two series of TaN films on glass and Si substrates by using reactive radio-frequency sputtering under 5-mtorr Ar/N2 processing pressure with varied N2 partial pressure, and carried out sy...

full text

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

the tribological properties of cu-ni3al-mos2 composite coating deposited by magnetron sputtering

in industrial applications, most materials are exposed to wear and friction because multiple conditions are used. however, the tribological properties of these materials can be improved with different techniques. one such technique that improves the frictional property of a surface is the use of self-lubricating coatings. in this study, multicomponent coatings of nominal composition cu-ni3al-mo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  15- 27

publication date 2020-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023