Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells
Authors
Abstract:
Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activity of the nanocomposites for ethanol oxidation was tested by cyclic voltammetry, Liner Sweep Voltammetry, amperometric i-t curve and electrochemical impedance spectroscopy techniques. The effect of some experimental factors on ethanol oxidation was investigated. CO stripping was used to determine the CO tolerance of the catalysts for ethanol oxidation. Incorporation of small amounts of Co and Fe nanoparticles in the Pt-CH catalyst caused the higher activity of the catalyst for ethanol electrooxidation. The activation energy of Pt-Co-Fe-CH catalyst obtained from the Arrhenius equation was lower than other studied catalysts. These results showed that Pt-Fe-Co-CH catalyst has better catalytic activity for ethanol oxidation among all prepared catalysts.
similar resources
Fabrication and Evaluation of Pt/M (M= Co, Fe) Chitosan Supported Catalysts for Methanol Electrooxidation: Application in Direct Alcohol Fuel Cell
In this work, Pt, Fe and Co nanoparticles were prepared by chemical reduction of the metal salts in chitosan as the support. NaBH4 was used as the reducing agent Pt-Fe, Pt-Co and Pt-Fe-Co-chitosan nanocomposites were synthesized and characterized by UV–Vis spectra and Transmission electron microscopy images. GC/Pt-chitosan, GC/Pt-Co-chitosan, GC/Pt-Fe-chitosan and GC/Pt-Co-Fe-chitosan electrode...
full textPt based anode catalysts for direct ethanol fuel cells
In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic vol...
full textPt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H₂ at Room Temperature.
A series of nanostructured Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H₂) were evaluated at room temperature. The results showed that MOx promoted the CO oxidation of Pt-Au/CeO₂, but only the TiO₂ could enhance co-oxidation of CO and H₂ over Pt-Au/CeO₂. Related characterizations were conducte...
full textActivity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation
The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...
full textActivity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation
The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...
full text#Pt Catalysts for Direct Alcohol Fuel Cells
Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Using energy efficient and rapid solution combustion synthesis technique, a variety of complex, i.e., pe...
full textMy Resources
Journal title
volume 7 issue 4
pages 292- 308
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023