Energy of Graphs, Matroids and Fibonacci Numbers

Authors

  • Mohammad A. Iranmanesh
  • Saeid Alikhani
Abstract:

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Graphs, partitions and Fibonacci numbers

The Fibonacci number of a graph is the number of independent vertex subsets. In this paper, we investigate trees with large Fibonacci number. In particular, we show that all trees with n edges and Fibonacci number > 2n−1 + 5 have diameter ≤ 4 and determine the order of these trees with respect to their Fibonacci numbers. Furthermore, it is shown that the average Fibonacci number of a star-like ...

full text

Hierarchic Graphs Based on the Fibonacci Numbers

In this paper, a new class of hierarchically definable graphs are proposed and they are proper subgraphs of Hierarchic Cubic graphs. These graphs are based on the Fibonacci series by changing initial conditions. When the initial conditions are changed, then the structure of obtained graph will be changed. Thus, we obtained a series of hierarchically definable graphs. The obtained graphs have lo...

full text

Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers

In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.

full text

Fibonacci Numbers

One can prove the following three propositions: (1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m). (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m · n) = gcd(k, n). (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and 0 < 1 n and 1 n ¬ s. In this article we present several logical schemes. The scheme Fib Ind conc...

full text

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue None

pages  55- 60

publication date 2010-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023