Energy Consumption and Heat Storage in a Solar Greenhouse: Artificial Neural Network Method

Authors

Abstract:

In this study, the performance of a solar greenhouse heating system equipped with a linear parabolic concentrator and a dual-purpose flat plate solar collector‏ was investigated using the Artificial Neural Network (ANN) method. The heat required for the greenhouse at night hours was supplied by the heat stored in the storage tank by the solar system during the sunshine time and  an auxiliary heater. A water pump was used to make a forced-flow through the concentrator assembly. While, a natural water flow occurred in the flat plate collector. ANN method was used to predict  the tank temperature and energy consumption from the heat storage tank and by the auxiliary heater. Network inputs were solar radiation intensity, ambient temperature, wind speed, collector surface temperature, greenhouse temperature, flow rate and time. About 80% of total data were used for training, 10% for testing and 10% for validation. The results indicated that the network topology of 7-15-1 with R² and MSE of respectively 0.98 and 0.00017 presented the best results for prediction of energy consumption from the tank. While the most suitable description for variations of energy consumption by the auxiliary heater and from storage tank was given by the network topologies‏ of 7-10-10-1 (with R² of 0.99 and MSE of 0.00014) and 7-5-15-1 (with R² 0.98 of MSE  of 0.00011), respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

economic optimization and energy consumption in tray dryers

دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...

15 صفحه اول

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

estimation of reference evapotranspiration in greenhouse by artificial neural network

nowadays artificial neural networks (anns) are being applied in several problems of water engineering where there is no clear relationship between effective parameters on the estimation of phenomenon. this research was used to measure aerodynamic data inside and outside greenhouse for estimating reference evapotranspiration in greenhouse by using anns. ann was used with perceptron multilayer st...

full text

Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynt...

full text

An artificial neural network to predict solar UV radiation in Tabriz

Introduction: Solar radiation has a major role in design, utilization, development, and planning of solar energy. The most important source of natural ultraviolet radiation is the sun, which has an important role in many biologic processes. Some of these processes are useful, like the production of vitamin D in the body, or curing rickets, and some of them are not, such as ski...

full text

Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps

In this work, the artificial neural network model was developed to predict the energy performance of a photovoltaic-thermal evaporator used in solar assisted heat pumps. The experiments were carried out under the meteorological conditions of Coimbatore city (latitude of 10.98 N and longitude of 76.96 E) in India. The energy performance parameters of a photovoltaic-thermal evaporator such as, ev...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 2

pages  5- 22

publication date 2017-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023