Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models

Authors

Abstract:

In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical  normal  models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association in the model will be presented. The comparison among various  empirical estimators  is illustrated through a simulation study. Finally, we apply our methods to a  real dataset.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models

Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparamet...

full text

SURE Estimates for a Heteroscedastic Hierarchical Model.

Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic norm...

full text

Empirical likelihood for heteroscedastic partially linear models

AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear mod...

full text

Optimal Shrinkage Estimation in Heteroscedastic Hierarchical Models

Hierarchical models are powerful statistical tools widely used in scientific and engineering applications. The homoscedastic (equal variance) case has been extensively studied, and it is well known that shrinkage estimates, the James-Stein estimate in particular, offer nice theoretical (e.g., risk) properties. The heteroscedastic (the unequal variance) case, on the other hand, has received less...

full text

Doubly fractional models for dynamic heteroscedastic cycles

Strong persistence is a common phenomenon that has been documented not only in the levels but also in the volatility of many time series. The class of doubly fractional models is extended to include the possibility of long memory in cyclical (non-zero) frequencies in both the levels and the volatility and a new model, the GARMA-GARMASV (Gegenbauer AutoRegressive Mean Average Id. Stochastic Vola...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 25  issue 2

pages  113- 120

publication date 2021-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023