Emission Reduction Strategies for Small Single Cylinder Diesel Engine Using Valve Timing and Swirl Ratio

Authors

  • A. Jain The Automotive Research Association of India, Pune, India
  • E. Porpatham Vellore Institute of Technology University, Vellore, India
  • S. S. Thipse The Automotive Research Association of India, Pune, India
Abstract:

Small diesel engines are widely used for commercial vehicle and passenger car applications due to their higher torque requirements, fuel economy, and better thermal efficiency. These engines are exposed to different operating and environmental conditions and hence emissions from these engines are erratic. Strategies are required to enhance performance and reduce engine-out emissions considering environmental pollution and regulations. The main objective of this experimental study is to develop strategies for performance improvement and emission reduction for naturally aspirated engines, which can further be used for emission reduction of the multicylinder engine. Experimental work has been carried out on a single-cylinder naturally aspirated diesel engine to study the impact of engine operating parameters like valve timing, swirl ratio, and injection pressure on engine performance and emissions. Parameters considered for the study are: three intake valve opening timings, two fuel injection pump pressures, two-cylinder head swirls, and three start of injection timings.  Results showed improvement in performance, lower exhaust gas temperature, and reduction of engine-out emission. Exhaust gas temperature was reduced by 5-18% with advanced valve opening and lower cylinder head swirl option. NOx emission was reduced by 5-50% at advanced intake valve opening (IVO) options with retarded start of injection (SOI) and lower swirl cylinder head. This has a penalty on CO and HC emissions since the availability of fresh air is less due to higher internal exhaust gas recirculation (EGR). Higher pressure fuel injection pump helps in improving engine torque with an adverse effect on engine-out NOx emission. As these engines are of low power capacity segment and are used in few countries, research on these engines is limited. All research work has been carried out in the field of intake valve closing timings, swirl ratio and injection timings; however, very limited research is available for the effect of intake valve opening timings due to practical limitations of the lower valve to piston clearance in diesel engines.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Effect of Injection Timing and Phasing on the Emission of a Gasoline Single Cylinder Engine

Performance evaluation of Internal Combustion Engines (ICEs) and setting different emission standards has manifested the importance of pollution reduction as well as the optimal fuel consumption of these engines. Accordingly, the Engine Management Systems (EMS) are utilized which resulted in optimizing the power alongside the decrease in pollutant emission, through preparing the appropriate air...

full text

Performance Modeling of Single Cylinder Diesel Engine for Pyrolysis Oil and Diesel Blend using Neural Networks

This investigation is an effort to find best optimization method for diesel engine using blended fuel. Present time, the scarcity of fossil fuel is a serious problem all over the world. So, researchers are trying to find best alternative fuel for that conventional fuel. When we use alternate fuel in diesel engine, we must have to optimize the parameter of diesel engine. The present trend will b...

full text

Rotating injector in DI diesel engine for improving performance and reducing NOx emission

Oxides of Nitrogen are the major emission from a diesel engine. It is due to heterogeneous diffusion combustion system with fuel-rich regions, which produce high local temperature around the periphery of the spray where high formation rate of NO is promoted. Various techniques are therefore employed to reduce the NOX emission like EGR, SCR, etc. In this present work a rotating injector is a tec...

full text

Effect of Ignition Timing, Equivalence Ratio, and Compression Ratio on the Performance and Emission Characteristics of a Variable Compression Ratio Si Engine using Ethanol-Unleaded Gasoline Blends

This paper investigates the effect of ethanol-unleaded gasoline blends (E0,E10,E25,E35,andE65) computer interfaced, four-stroke single cylinder compression ignition engine. The said engine wasconverted to spark ignition and carburetion to suit ethanol fuel. A suitable provision was provided on theengine to vary the compression ratio thereby making the engine adaptable to operate at lowercompres...

full text

The Effect of Valve Lift on In-Cylinder Flow, Performance and Emissions in a Turbocharged DI Diesel Engine

A computational optimization was performed for a direct-injection diesel engine using three-dimensional modeling. Fully transient CFD analyses of different valve profile strategies for the intake and compression strokes were performed to evaluate the effects on both engine performance and in-cylinder flow-field evolution. The turbulence model was used along with the second order linear upwin...

full text

Detection of Diesel Engine Valve Clearance by Acoustic Emission

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 8

pages  1608- 1619

publication date 2020-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023