Embedding measure spaces
author
Abstract:
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification occurs.
similar resources
embedding measure spaces
for a given measure space $(x,{mathscr b},mu)$ we construct all measure spaces $(y,{mathscr c},lambda)$ in which $(x,{mathscr b},mu)$ is embeddable. the construction is modeled on the ultrafilter construction of the stone--v{c}ech compactification of a completely regular topological space. under certain conditions the construction simplifies. examples are given when this simplification o...
full textLearning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint
The goal of this paper is to investigate the advantages and disadvantages of learning in Banach spaces over Hilbert spaces. While many works have been carried out in generalizing Hilbert methods to Banach spaces, in this paper, we consider the simple problem of learning a Parzen window classifier in a reproducing kernel Banach space (RKBS)—which is closely related to the notion of embedding pro...
full textEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
full textBanach Spaces Embedding Into
Our main result in this paper is that a Banach space X embeds into L, if and only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if and only if lp (X) embeds into L~,.
full textEmbedding into Rectilinear Spaces
We show that the problem whether a given finite metric space (X, d) can be embedded into the rectilinear space R m can be formulated in terms of m-colorability of a certain hypergraph associated with (X, d). This is used to close a gap in the proof of an assertion of Bandelt and Chepoi [2] on certain critical metric spaces for this embedding problem. We also consider the question of determining...
full textBanach Spaces Embedding Isometrically Into
For 0 < p < 1 we give examples of Banach spaces isometrically embedding into Lp but not into any Lr with p < r ≤ 1.
full textMy Resources
Journal title
volume 40 issue 1
pages 125- 155
publication date 2014-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023