Electrospinning of Polyacrylonitrile Nanofibers and Simulation of Electric Field via Finite Element method
Authors
Abstract:
Objective(s): Since the electric field is the main driving force in electrospinning systems, the modeling and analysis of electric field distribution are critical to the nanofibers production. The aim of this study was modeling of the electric field and investigating the various parameters on polyacrylonitrile (PAN) nanofibers morphology and diameter. Methods: The electric field profile at the nozzle and electrospinning zone was evaluated by Finite Element Method. The morphology and diameter of nanofibers were examined by Scanning electron microscopy (SEM). Results: The results of the electric field analysis indicated that the electric field was concentrated at the tip of the nozzle. Moreover, in the spinning direction, the electric field was concentrated at the surface of the spinneret and decayed rapidly toward the surface of the collector. Increasing polymer solution concentration from 7 to 11wt.% led to increasing nanofibers diameter form 77.76 ± 19.44 to 202.42 ± 36.85. Conclusions: Base on our results, it could be concluded that concentration of the electric field at the tip of the nozzle is high and initiates jet and nanofibers formation. PAN nanofibers can be transformed to carbon nanofibers which have various applications in biomedicine.
similar resources
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Synthesis of Zataria Multiflora extraction loaded chitosan/PEO nanofibers via electrospinning method for potential biomedical applications
Background & Objective: The nanofibers are referred to as fibers with a diameter of less than 1000 nm. There are various ways to make nanofibers, one of which is electrospinning. In this method, nanofibers are formed on aluminum sheets. The conversion of chitosan to derivatives with greater solubility, its mixing with other polymers and the use of special solvents are methods for its ease of us...
full textsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Main-chain polybenzoxazine nanofibers via electrospinning
Here we report the successful production of nanofibers from main-chain polybenzoxazines (MCPBz) via electrospinning without using any other carrier polymer matrix. Two different types of MCPBz (PBA-ad6 and PBA-ad12) were synthesized by using two types of difunctional amine (1,6-diaminohexane and 1,12diaminododecane), bisphenol-A, and paraformaldehyde as starting materials through a Mannich reac...
full textSimulation and Experimental Study of Vibration and Noise of Pure Electric Bus Transmission based on Finite Element and Boundary Element Methods
Since the electric motor of pure electric vehicle replaced the engine, the "masking effect" disappears, and the problem of vibration and noise of the transmission becomes prominent. This is generated during the gear meshing and is transmitted to the housing through the shaft and bearing. Thereby, radiation noise of the housing are generated. The prediction and analysis...
full textPreparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning
ZnS:Cu/Poly(vinyl alcohol) (PVA) composite nanofibers have been successfully prepared by electrospinning technique. The formation of ZnS: Cu/PVA nanofibers were carried out by reacting H2S with Zn(AC)2:Cu/PVA nanofibers, which were electrospun from the mixture aqueous solution of Zn(Ac)2, Cu(Ac)2 and PVA. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray-diffr...
full textMy Resources
Journal title
volume 2 issue 2
pages 87- 92
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023