Electrophoretic Formation of Zinc Oxide Based Ntc Rsistors (RESEARCH NOTE)

Authors

Abstract:

Fine zinc oxide particles were electrophoretically deposited  on alumino-ferro-chrome substrates. The deposition was carried out in a cylindrical ZnO/acetone electrophoresis cell. The deposits were dried and sintered at 1030³C in air. The process resulted a porous polycrystalline ZnO cladding over the alloy core. Comb shaped silver electrodes were formed and fired at 350³C. The variation of device resistance vs. temperature was studied in air in the range of 100 - 250³C. The NTC of resistivity at 100³C and the activation energy of carrier generation was found to be 4.0% K-1 and 1.1eV respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Electrophoretic Synthesis of Titanium Oxide Nanotubes

In the current research project, sol-gel electrophoresis technique was utilized to grow titanium dioxide (TiO2) nanotubes. A titanium sol was prepared using organometallic precursors of titanium to fill the template channels. The prepared solwas driven into nanopores of porous anodic aluminum oxide templates under the influence of a DC electric field to form nanotubes on the pore walls. Tube fo...

full text

Graphene Oxide Antibacterial Sheets: Synthesis and Characterization (RESEARCH NOTE)

Graphene oxide (GO) was synthesized by oxidation of graphite powder using a time-saving modification of Hummers’ method and its antibacterial activity was investigated. Different techniques were applied to characterize the synthesized GO. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the crystallinity, morphology, topograp...

full text

Preparation of Cobalt Oxide/Zinc Oxide Nanocomposite

Cobalt Oxide/ Zinc Oxide nanocomposite was synthesized by dropwise addition ofCo(NO)3.6H2O and Zn(NO3)2.4H2O solutions to KOH solution at different temperatures followed bycalcination at 300ºC for 4 h. The morphology and structure of nanoparticles and the influence oftemperature on particle size were studied using scanning electron microscopy (SEM) and X-RayDiffraction (XRD). Minimum particle s...

full text

Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

Objective(s): Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs) on biofilm. Materials and Methods: Aft...

full text

Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed...

full text

Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

Objective(s): This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. Materials and Methods: Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determin...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 3

pages  75- 80

publication date 2000-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023