Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

Authors

  • Aghdas Banaei Department of Physics, Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Tehran, I.R. IRAN
  • Nahid Parsafar Department of Physics, Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Tehran, I.R. IRAN
  • Vahid Ghafouri Department of Physics, Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Tehran, I.R. IRAN
Abstract:

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that MWCNTs-COOH is distributed fairly uniform on the hydrophobic membrane. Quantitative results of Energy Dispersive X-ray (EDX) analysis show the presence of carbon (85.95 wt %) and oxygen (12.95 wt %) on the working electrode. The cyclic voltammetry results show the MWCNTs-COOH responds to H2S. The sensor response up to 56 ppm of H2S gas was measured by chronoamperometry. The sensor showed linear behavior up to 16 ppm. The detection limit of the sensor is 310 ppb and its sensitivity 48 hours after assembling is 0.1436 µA/ ppm. The averages of response and recovery times for 10 ppm of H2S were obtained 6.06 and 4.13 minutes respectively. The sensor with functionalized carbon nanotubes has many advantages than the sensor with raw carbon nanotubes; include more uniformity of fabricated electrodes, greater response, and less noise. Using functionalized carbon nanotubes concerning raw nanotubes increases the response of the sensor by 14.8 times at 10 ppm of H2S. Also, the response of the sensor to 250 ppm concentration of carbon monoxide gas was 4.35 nA which is very low concerning sensor response for hydrogen sulfide (1.64 µA for 10 ppm of H2S).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Functionalization of Carboxylated Multi-Walled Nanotubes with Stabilised Phosphorus Ylide

In this paper, the chemical Functionalization of Carboxylate multi-walled carbon nanotubes by methyl (triphenyl phosphoranylidene) acetate have been investigated. Phosphorus Ylides are important compound in organic chemistry. At first, methyl (triphenyl phosphoranylidene) acetate, synthesized from salt metod in two steps: the formation of the phosphonium salt and the deprotonation of the latter...

full text

Functionalization of Carboxylated Multi-Walled Nanotubes with Stabilised Phosphorus Ylide

In this paper, the chemical Functionalization of Carboxylate multi-walled carbon nanotubes by methyl (triphenyl phosphoranylidene) acetate have been investigated. Phosphorus Ylides are important compound in organic chemistry. At first, methyl (triphenyl phosphoranylidene) acetate, synthesized from salt metod in two steps: the formation of the phosphonium salt and the deprotonation of the latter...

full text

Investigation of Multi-Walled Carbon Nanotubes as Electrochemical Electrodes

Individual multi-walled carbon nanotubes were investigated for their usefulness as nanoscale electrochemical electrodes. The nanotubes were mounted on metal-coated atomic force microscopy tips, and the assembly was insulated with Parylene polymer. Approximately 200nm of the nanotube tip was exposed by use of a laser so the entire probe could be immersed in an electrolytic solution with only the...

full text

Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

: A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx...

full text

Surfactant and polymer-free electrochemical micropatterning of carboxylated multi-walled carbon nanotubes on indium tin oxide electrodes.

We present a facile micropatterning method that is based on the electrochemically induced deposition of carboxylated multi-walled carbon nanotubes on an indium tin oxide electrode without using surfactants or polymers.

full text

Gas Sensing Properties and Transport Properties of Multi Walled Carbon Nanotubes

OF THESIS GAS SENSING PROPERTIES AND TRANSPORT PROPERTIES OF MULTI WALLED CARBON NANOTUBES Multi walled carbon nanotubes (MWCNT) grown in highly ordered porous alumina templates were incorporated into a resistive gas sensor design and were evaluated for their sensitivities. The material characteristics and electrical properties of the nanotubes were analyzed. A study was undertaken to elucidate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 6

pages  53- 62

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023