ELECTROCHEMICAL INVESTIGATION OF INHIBITORY OF NEW SYNTHESIZED TETRAZOLE DERIVATIVE ON CORROSION OF STAINLESS STEEL 316L IN ACIDIC MEDIUM

Authors

  • A. Ehsani department of chemistry, Qom University, Qom, iran
  • M Hadi department of chemistry, Qom University, Qom, iran
  • S Bodaghi department of chemistry, Qom University, Qom, iran
Abstract:

In this study, an  organic compound  inhibitor, namely N-benzyl-N-(4-chlorophenyl)-1H-tetrazole-5-amine (NBTA), was synthesized and the role of this inhibitor for corrosion protection of stainless steel (SS) exposed to 0.5 M H2SO4 was investigated using electrochemical, and quantum analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of NBTA was found to be mainly mixed type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, quantum chemical calculations of the inhibitor were performed. The adsorption of NBTA onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of of -7.88 kJ mol-1. Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of NBTA.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Micro abrasion-corrosion of AISI 316L stainless steel

In this study, the synergistic effects of abrasion and corrosion on AISI 316L stainless steel have been investigated using a micro-abrasion test rig. A series of results from abrasioncorrosion tests conducted using the micro-abrasion rig are presented. AISI 316L stainless steel has been studied under both pure abrasion and abrasion-corrosion conditions simulated by either distilled water or 3.5...

full text

Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel

In this study, double loop electrochemical potentiokinetic reactivation (DLEPR) test was applied to determine the degree of sensitization in 316L type stainless steel, where obtained results were correlated with revealed microstructures after oxalic acid test and weight loss measurements of Streicher and Huey acid tests. Best agreement was provided with test parameters which are 1 M H2SO4 and 0...

full text

Electrochemical polishing of 316L stainless steel slotted tube coronary stents.

Surface smoothness is one of the properties determining the performance of stents. Therefore, surface polishing shows its importance in the exploitation and production of stents. The present study explores electrochemical polishing of 316L stainless steel slotted tube coronary stents produced by laser cutting. Acid pickling was also studied as a pre-treatment of electrochemical polishing of the...

full text

Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.

Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells ...

full text

Alumina nanostructured coating for corrosion protection of 316L stainless steel

Nanostructured alumina thin films were coated on stainless steel by Sol-Gel dip coating method. In order to prevent crack formation, Al2O3 films were kept in a solvent bath immediately after coating to reduce the rate of drying. Effects of calcination temperature and withdrawal speed on structural properties were analyzed using XRD and SEM. Topography and thickness of coat...

full text

Alumina nanostructured coating for corrosion protection of 316L stainless steel

Nanostructured alumina thin films were coated on stainless steel by Sol-Gel dip coating method. In order to prevent crack formation, Al2O3 films were kept in a solvent bath immediately after coating to reduce the rate of drying. Effects of calcination temperature and withdrawal speed on structural properties were analyzed using XRD and SEM. Topography and thickness of coat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 3

pages  19- 28

publication date 2016-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023