Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode
Authors
Abstract:
In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles (CuNPs).Using the proposed nanocomposite provides a specific platform with increased surface. The surface morphology of this modified electrode was characterized by field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometer (EDX) techniques. The electrochemical behaviors of the fabricated sensor were investigated by cyclic voltammetry (CV) and chronoamperometry modes. Under optimal conditions, the amperometric study exhibits two linear ranges of 1–11 and 11–200 μmol L-1 with a detection limit (LOD) of 0.33 nmol L-1 (at an S/N of 3) and sensitivity of 1.9 nA μmol L-1 for Asulam determination. This novel sensor was used to analyze the real sample. The sensor provides a convenient, low-cost and simple method for Asulam detection and proposes new horizons for quantitative detection of Asulam.
similar resources
Immunoassay for Human Chorionic Gonadotropin Based on Glassy Carbon Electrode Modified with an Epitaxial Nanocomposite
A highly sensitive electrochemicalimmunosensor was developed to detect hCG based on immobilization ofhCG-antibody (anti-hCG) onto robust nanocomposite containing Gr, Chit,1-methyl-3-octyl imidazolium tetra fluoro borate ionic liquid (IL)(Gr-IL-Chit). AuNPs were used to immobilize hCG antibody on the modifiedelectrode. The amine groups of the antibody are cova...
full textimmunoassay for human chorionic gonadotropin based on glassy carbon electrode modified with an epitaxial nanocomposite
a highly sensitive electrochemicalimmunosensor was developed to detect hcg based on immobilization ofhcg-antibody (anti-hcg) onto robust nanocomposite containing gr, chit,1-methyl-3-octyl imidazolium tetra fluoro borate ionic liquid (il)(gr-il-chit). aunps were used to immobilize hcg antibody on the modifiedelectrode. the amine groups of the antibody are covalently attached toaunps/gr-il-chit n...
full textSimultaneous electrochemical determination of Acetaminophen and Codeine based on a MWCNT/MCM48 nanocomposite modified glassy carbon
A novel chemically modified electrode was constructed based on multi-walled carbon nanotubes, MCM48 molecular sieve composite modified glassy carbon electrode .The modified electrode showed that it can be used for simultaneous determination of acetaminophen (ACT) and codeine (COD), simultaneously. The measurements were carried out by the application of differential pulse voltammetry (DPV), cycl...
full textA New Hydroxylamine Electrochemical Sensor Based on an Oxadiazol Derivative and Multi-wall Carbon Nanotuhes Modified Glassy Carbon Electrode
A new hydroxylamine sensor has been fabricated by immobilizing oxadiazol denvative at the surface ol aglassy carbon electrode (GCE) modified by multi-wall carbon nanotube (MIVCNT). The adsorbed thin Illms oroxadiazol derivative on the MWCNT modified GCE show a pair of peaks with surface confined characierisnus.The oxadiazol derivative MWCNI (OMWCNT) modified GCE shows highly catalytic activity ...
full textDirect proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode.
A novel glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) is reported. The gel is formed by grinding of MWNTs and BMIPF6. Such gel is then coated on the surface of a glassy carbon electrode. We have employed scanning electron microscopy, Fourier transform infrared spectrometry (...
full textCorrection: Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Polythionine and Multiwalled Carbon Nanotubes
A novel glucose biosensor was fabricated. The first layer of the biosensor was polythionine, which was formed by the electrochemical polymerisation of the thionine monomer on a glassy carbon electrode. The remaining layers were coated with chitosan-MWCNTs, GOx, and the chitosan-PTFE film in sequence. The MWCNTs embedded in FAD were like "conductive wires" connecting FAD with electrode, reduced ...
full textMy Resources
Journal title
volume 10 issue 1
pages 128- 139
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023