Electro-Mechanical Buckling of a Piezoelectric Annular Plate Reinforced with BNNTs Under Thermal Environment

Authors

  • A Ghorbanpour Arani Faculty of Mechanical Engineering, University of Kashan--- Institute of Nanoscience & Nanotechnology, University of Kashan
  • E Haghparast Faculty of Mechanical Engineering, University of Kashan
Abstract:

In this article, axisymmetric buckling behavior of piezoelectric fiber reinforced polymeric composite (PFRPC) annular plate subjected to electro-thermo-mechanical field is presented utilizing principle of minimum potential energy. Boron-nitride nanotubes (BNNTs) are used as fibers. Full coupling between electrical, mechanical and thermal fields are considered according to a representative volume element (RVE)-based XY piezoelectric fiber reinforce composite (PEFRC) model. Assuming PFRPC material and its composite constituents to be linear, homogenous, orthotropic, and perfectly bonded with uniform applied field, the basic relation for the axisymmetric buckling of a circular plate subjected to radial compression, radial electrical field, and uniform temperature change  are derived. The presented results show that BNNTs can be used as an effective supplement to improve mechanical behavior of polyvinylidene fluoride (PVDF). Also, at normal working conditions, the influence of thermal and mechanical fields is much higher than the electric one on the critical load; hence, this smart structure is best suited for applications as sensors than actuators. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effects of Electro-Thermal Fields on Buckling of a Piezoelectric Polymeric Shell Reinforced with DWBNNTs

Using  principle  of  minimum  total  potential  energy  approach  in conjunction  with  Rayleigh-Ritz  method,  the  electro-thermo- mechanical  axial  buckling  behavior  of  piezoelectric  polymeric cylindrical  shell  reinforced  with  double-walled  boron-nitride nanotube  (DWBNNT)  is  investigated. Coupling  between  electrical and mechanical  fields  are  considered  according  to  ...

full text

Vibration, Buckling and Deflection Analysis of Cracked Thin Magneto Electro Elastic Plate Under Thermal Environment

The Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects under thermal environment. The effects of such pyroelectric and pyromagnetic behavior on vibration, buckling and deflection analysis of partially cracked thin MEE plate is presented and discussed in this paper. The aim of the study is to develop an analytical model for the vibration and geometrically linea...

full text

effects of electro-thermal fields on buckling of a piezoelectric polymeric shell reinforced with dwbnnts

using  principle  of  minimum  total  potential  energy  approach  in conjunction  with  rayleigh-ritz  method,  the  electro-thermo-mechanical  axial  buckling  behavior  of  piezoelectric  polymeric cylindrical  shell  reinforced  with  double-walled  boron-nitride nanotube  (dwbnnt)  is  investigated. coupling  between  electrical and mechanical  fields  are  considered  according  to  a  re...

full text

Electro-Thermo-Mechanical Response of Thick-Walled Piezoelectric Cylinder Reinforced by BNNTs

Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) subjected to electro-thermo-mechanical fields is presented in this article. The electro-thermo-elastic properties of piezoelectric fiber reinforced composite (PEFRC) was studied by a modified XY micromechanical model capable of exhibiting full coupling relati...

full text

Analytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure

In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...

full text

Analytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non- axisymmetric Internal Pressure

In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 4

pages  379- 391

publication date 2011-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023