Electro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly (o-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode
Authors
Abstract:
In this work, Phosphotungstic Acid modified Carbon Paste Electrode (PWA-CPE) is used as a substrate for electro-polymerization of o-Anisidine (OA). Also, Triton X-100 (TX-100) surfactant is used as an additive for electrochemical polymerization of OA onto the PWA-CPE, which is investigated as a novel matrix for dispersion of nickel species. The prepared electrodes are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and electrochemical methods. Growth of the poly o-Anisidine (POA) film in the absence of TX-100 and/or PWA is very poor, while it considerably increases in the presence of them. The methanol oxidation and stability of the Ni/POA (TX-100)/PWA-CPE are investigated by various electrochemical techniques. It has been shown that the poly (o-Anisidine)/Triton X-100 (POA (TX-100)) at the surface of PWA-CPE improves the catalytic efficiency of the dispersed Ni(OH)2 nanoparticles towards methanol oxidation.
similar resources
Electrocatalytic oxidation of formaldehyde onto Pt nanoparticles modified poly (m-toluidine)/Triton X-100 film
In this work, spherical Pt nanometer-scale particles supported on the poly (m-toluidine)/Triton X-100 film modified carbon nanotube paste electrode (Pt/PMT (TX-100)/MCNTPE) was used as a potent catalyst for electrooxidation of formaldehyde (HCHO) in both 0.5 M H2SO4 and 0.1 M NaOH solutions. The obtained results showed that utilization of TX-100 as an additive during the electropolymerization p...
full textHighly improved methanol oxidation onto carbon paste electrode modified by nickel particles dispersed into poly (2,5-dimethylaniline) film
In this work, modification of carbon paste electrode surface with poly (2, 5-Dimethyl aniline) (P-2,5-DMA) by using electrochemical polymerization was described. Then, transition metal ions of Ni(II) were incorporated into the polymer film by two ways. At first way, the polymeric modified electrode was immersed in 0.2 M NiSO4 solutions and the second way was carried out by electrodeposition of ...
full textelectrocatalytic oxidation of formaldehyde onto pt nanoparticles modified poly (m-toluidine)/triton x-100 film
in this work, spherical pt nanometer-scale particles supported on the poly (m-toluidine)/triton x-100 film modified carbon nanotube paste electrode (pt/pmt (tx-100)/mcntpe) was used as a potent catalyst for electrooxidation of formaldehyde (hcho) in both 0.5 m h2so4 and 0.1 m naoh solutions. the obtained results showed that utilization of tx-100 as an additive during the electropolymerization p...
full texthighly improved methanol oxidation onto carbon paste electrode modified by nickel particles dispersed into poly (2,5-dimethylaniline) film
in this work, modification of carbon paste electrode surface with poly (2, 5-dimethyl aniline) (p-2,5-dma) by using electrochemical polymerization was described. then, transition metal ions of ni(ii) were incorporated into the polymer film by two ways. at first way, the polymeric modified electrode was immersed in 0.2 m niso4 solutions and the second way was carried out by electrodeposition of ...
full textApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
full textELECTROCHEMICAL OXIDATION OF ASCORBIC ACID MEDIATED BY CARBON NANOTUBES /Li/ CARBON PASTE MODIFIED SOLID ELECTRODE
Multi-walled carbon nanotube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electrocatalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30% (w/w) carbon paste (binder): 70...
full textMy Resources
Journal title
volume 38 issue 2
pages 37- 48
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023