Efficient Removal of Methylene Blue from Aqueous Solution by Adsorption on Cerium Vanadate Nanoparticles

Authors

  • M. Hosseini Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
  • M. R. Ganjali Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
  • M. Sadeghpour Karimi Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
  • Sh. Dehghan Abkenar Department of Chemistry, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran.
Abstract:

Cerium vanadate nanoparticles (CVNPs) were used as a solid phase adsorbent for removing methylene blue (MB) from aqueous media. The nanoparticles were obtained through a direct precipitation procedure in aqueous solutions, and were characterized by X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results proved the product to comprise 25-45 nm particles. Batch adsorption experiments to determine the optimal adsorption conditions and the different factors which influence the adsorption efficiency (i.e. pH, amount of CVNPs, contact time, and the concentration of MB) were also evaluated. The experimental data were analyzed using the Langmuir and freundlich adsorption models.The data were satisfactorily fitted to the Langmuir model and a maximum adsorption capacity of 181.8 mg/g was obtained at pH of 3.0. Further kinetics studies were performed on the parameters. The adsorption of the model dye (MB) was found to reach equilibrium after 10 min, following a pseudo-second-order kinetic model. Desorption of the dye and recycling potential of the adsorbent was also studied.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Application of Copper Vanadate Nanoparticles for Removal of Methylene Blue from Aqueous Solution: Kinetics, Equilibrium, and Thermodynamic Studies

Copper vanadate nanoparticles were synthesized by a simple coprecipitation method in an aqueous medium and the products were used as adsorbents for eliminating methylene blue (MB) from water. The structure and morphology of the produced nanoparticles were evaluated through X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analysis. The results...

full text

Adsorption of Methylene Blue from Aqueous Solutions by Silk Cocoon ‎

This study concerns the performance of cocoons spun by silk worms as a natural ‎adsorbent for removal of Methylene Blue (MB) from aqueous solutions. To study the adsorption ‎process, the effect of various parameters such as contact time, adsorbent dosage, dye initial ‎concentration, and pH of the solution were investigated. According to the experiments, the kinetic ‎data were best described by ...

full text

Removal of Methylene Blue from Aqueous Solution by Adsorption onto Crofton Weed Stalk

Crofton weed stalk (CWS) was used as an adsorbent to remove methylene blue (MB) from aqueous solution. The adsorbent was analyzed by FT-IR and observed by SEM. The porosity and pHzpc were measured. The effects of adsorbent dose, initial dye concentration, solution pH, and solution temperature were investigated. Models of the adsorption kinetics and isotherms were analyzed, and thermodynamic par...

full text

Efficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst

Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...

full text

Investigation of performance of bimodal/functionalized mesoprorous silica nanoparticles on the adsorption of methylene blue from aqueous solution

In this study, bimodal mesoporous silica, i.e. UVM-7, was synthesized and functionalized withsulfonic acid and characterized using XRD, nitrogen physisorption, SEM, TEM and acid/basetitration. The results displayed that bimodal mesopore structure was firmly formed and acidicfunctional groups were grafted on the surface of the UVM-7. The concentration of the acidicfunctional groups was determine...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  339- 349

publication date 2019-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023