Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Authors
Abstract:
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some dependent effective operators of GA. The proposed method can be straightforwardly adapted to run on many-core and multi-core processors by using Compute Unified Device Architecture (CUDA) and Threading Building Blocks (TBB) platforms. To efficiently use the valuable resources of such computing cores in concurrent execution of the GA, threads that run any of the triple kernels are synchronized by a considerably fast switching technique. The offered method was used for parallelizing a GA-based solution of Traveling Salesman Problem (TSP) over CUDA and TBB platforms with identical settings. The results confirm the superiority of the proposed method to state-of-the-art methods in effective parallelization of GAs on Graphics Processing Units (GPUs) as well as on multi-core Central Processing Units (CPUs). Also, for GA problems with a modest initial population, though the switching time among GPU kernels is negligible, the TBB-based parallel GA exploits the resources more efficiently.
similar resources
Immune-Genetic Algorithm for Traveling Salesman Problem
The Traveling Salesman Problem (TSP), first formulated as a mathematical problem in 1930, has been receiving continuous and growing attention in artificial intelligence, computational mathematics and optimization in recent years. TSP can be described as follows: Given a set of cities, and known distances between each pair of cities, the salesman has to find a shortest possible tour that visits ...
full textTraveling Salesman Problem using Genetic Algorithm
Traveling Salesman Problem (TSP) is an NP-hard Problem, which has many different real life applications. Genetic Algorithms (GA) are robust and probabilistic search algorithms based on the mechanics of natural selection and survival of the fittest that is used to solve optimization and many real life problems. This paper presents Genetic Algorithm for TSP. Moreover it also shows best suitable p...
full textSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
full textSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
full textParallelization of the Lanczos Algorithm on Multi-core Platforms
In this paper, we report our parallel implementations of the Lanczos sparse linear system solving algorithm over large prime fields, on a multi-core platform. We employ several load-balancing methods suited to these platforms. We have carried out process-level and threadlevel parallel implementations under two different arithmetic libraries, and the best speedup obtained is 6.57 on eight cores....
full textAn Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem
The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper,...
full textMy Resources
Journal title
volume 33 issue 7
pages -
publication date 2020-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023