Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions

Authors

  • Amir Afsharinia Department of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
  • Kambiz Farahmand Department of Industrial & Manufacturing Engineering, North Dakota State University, United States of America
  • Morteza Bagherpour Department of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran
Abstract:

Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate the performance measurement of clinical units under uncertainty. Methods: Correlations between the input variables were calculated using Pearson’s correlation coefficient. Independent component analysis was used to extract independent components from input variables. Independent components were filtered against Gaussianity using Kurtosis parameter. An integrated independent component analysis-fuzzy-data envelopment analysis method was developed by using the uncertainty theory in the nonlinear fractional model proposed by Charnes, Cooper, and Rhodes (1978). The resulting fuzzy efficiency numbers were converted into normal ranking values by calculating amatrix of degree of preference. Findings: Under certainty, while data envelopment analysis identified 12 out of the 19 units as efficient units, independent component analysis-data envelopment analysis approach identified only three efficient units. On the other hand, under fuzzy conditions, while fuzzy-data envelopment analysis identified 12 efficient units, independent component analysis-fuzzy-data envelopment analysis identified only three units as efficient units. Conclusions: The results indicated that independent component analysis-fuzzy-data envelopment analysis offers the same efficiency measurement performance under fuzzy conditions as corresponding non-fuzzy method does under certain conditions. Our findings, hence, recommend use of the new approach in estimating efficiency of clinical units when access to reliable data is limited.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

efficiency measurement of clinical units using integrated independent component analysis-dea model under fuzzy conditions

background and objectives: evaluating the performance of clinical units is critical for effective managementof health settings. certain assessment of clinical variables for performance analysis is not always possible,calling for use of uncertainty theory. this study aimed to develop and evaluate an integrated independentcomponent analysis-fuzzy-data envelopment analysis approach to accurate the...

full text

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Efficiency measurement using independent component analysis and data envelopment analysis

Efficiency measurement is an important issue for any firm or organization. Efficiency measurement allows organizations to compare their performance with their competitors’ and then develop corresponding plans to improve performance. Various efficiency measurement tools, such as conventional statistical methods and non-parametric methods, have been successfully developed in the literature. Among...

full text

An efficiency measurement model in fuzzy environments, using data envelopment analysis

Data Envelopment Analysis (DEA) is a technique used to compare efficiency in various sectors such as hospitals, chain stores, and dealerships. It represents a set of linear programming techniques and uses deter-ministic data (inputs and outputs), in stable conditions. The DEA technique cannot be used when there is data with indeterministic nature, or when there is an environment with dynamic co...

full text

Relative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation

Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...

full text

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  109- 118

publication date 2013-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023