Effects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films
Authors
Abstract:
In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates. Some characterization techniques such as UV/Visible, FTIR spectroscopy and contact angle measurement were used to study the induced changes on the properties of the treated substrates. FTIR and UV spectra obtained from substrates before and after UV irradiation treatment, showed that UV irradiation has induced some chemical and physical changes in surface properties. The initial contact angle of PC surface was 94°, which decreased substantially after treatment. The XRD pattern reveals that TiO2 thin film has a crystalline structure, and it has been observed in two phases: (1) anatase and (2) rutile. According to UV/Vis spectra of samples the prepared films have high transmission. AFM has been applied for morphology characterization of the films surface. The surface morphology results indicate that UV exposure time lead to alter in the roughness of the nanoTiO2 thin films.
similar resources
Ferromagnetism in sol-gel derived ZnO: Mn nanocrystalline thin films
This paper reports the growth of Mn doped ZnO thin films by sol-gel technique with different Mn concentration (0-20 %). Structural and vibrational properties have been measured by X-ray diffraction and Raman spectroscopy. The films exhibit crystalline nature with (002) preferential orientation. The crystallite size and lattice parameters have been estimated as a function of Mn concentration. Th...
full textEffect of annealing and UV illumination on properties of nanocrystalline ZnO thin films
ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...
full textStress effects in sol-gel derived ferroelectric thin films
Residual stress development during processing of sol-gel derived ferroelectric thin films influences electromechanical properties and performance. The present work investigates the effects of stress on field-induced polarization switching in ferroelectric Pb~Zr0.52Ti0.48)O3 ~PZT! ~52/48! thin films. Film response is measured as a function of externally applied mechanical stress using a double-b...
full textEffect of annealing and UV illumination on properties of nanocrystalline ZnO thin films
ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...
full textPreferred crystal orientation of sol-gel-derived Bi4-xLaxTi3O12 thin films on silicon substrates.
Polycrystalline thin films of La-substituted bismuth titanate (BLT) were formed directly on p-type Si(100) substrates by using sol-gel and spin coat methods. The BLT film and interfacial layer between BLT and Si were quantitatively investigated by the X-ray reflectivity method. Also, crystal orientations of sub-100-nm-thick BLT thin films were confirmed by X-ray diffraction using a synchrotron ...
full textMy Resources
Journal title
volume 1 issue 2
pages 73- 79
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023