Effects of Geometric Nonlinearity on Stress Analysis in Large Amplitude Vibration of thin Circular Functionally Graded Plates With Rigid Core

Authors

  • Farshad Fotros Mechanical Engineering, Babol Noshirvani University of Technology
  • M. H. Pashaei Department of solid Mechanics, Babol Noshirvani University of Technology
  • M.H. Naei Mechanical Engineering, University of Tehran
Abstract:

Abstract  In this paper , the nonlinear the nonlinear free and forced axisymmetric vibration of a thin circular functionally graded plate with rigid core is formulated in terms of von-Karman’s dynamic equation , and a semi-analytical approach is developed.Functionally graded material (FGM) properties vary through the thickness of the plate.FGM s are spatial composites within which material properties vary continuously and inhomogeneously.This problem is solved with MATLAB code.The mass of the core respect to the mass of plate is negligible. For verification, a solved coreless FGM circular plate has been solved by this code. The results show a good approximation. The results reveal that vibration amplitude and volume fraction have significant effects on the resultant stresses in large amplitude vibration of the functionally graded plate with rigid core.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effects of Geometric Nonlinearity on Stress Analysis in Large Amplitude Vibration of Moderately Thick Annular Functionally Graded Plate

This paper deals with the nonlinear free vibration of thick annular functionally graded material plates. The thickness is assumed to be constant. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on the first-order shear deformation plate theory and...

full text

Vibration and Static Analysis of Functionally Graded Porous Plates

This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...

full text

Free Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method

A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plat...

full text

Buckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported

In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equat...

full text

Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element mo...

full text

Disk Vibration Analysis of Functionally Graded Materials

Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 24  issue 3

pages  281- 290

publication date 2011-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023