EFFECT OF PH CHANGES ON PHASE CONSTITUENTS, MICROSTRUCTURE AND MAGNETIC PROPERTIES OF NANO-SIZED NiFe2O4 POWDER SYNTHESIZED BY SOL–GEL AUTO-COMBUSTION METHOD
Authors
Abstract:
Nano-sized NiFe2O4 powders were synthesized by sol–gel auto-combustion method using pH values from 7 to 9 in the sol. The effect of pH variations on complexing behavior of the species in the sol has been explained. Changes in phase constituents, microstructure and magnetic properties by changes in pH values were evaluated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. Changes in pH value from 7 to 9 changes the amounts of NiFe2O4, FeNi3 and α-Fe2O3 phases. Calculated mean crystallite sizes are in the range of 44 to 51nm. FESEM micrographs revealed that increasing the pH value to 9 causes formation of coarse particles with higher crystallinity. Saturation magnetization was increased from 36.96emu/g to 39.35emu/g by increasing pH value from 7 to 8 which is the result of increased FeNi3 content. Using higher pH values in the sol reduces the Ms value.
similar resources
Microstructure and Magnetic Properties of Sr2Co1.7Mg0.3Fe11.2 Hexaferrite Synthesized by Auto-Combustion Sol-Gel Method
A single phased Y-type hexagonal ferrite Sr2Co1.7Mg0.3Fe11.2Sn0.4Zn0.4O22 was synthesized by the sol–gel auto combustion method. Structural and magnetic properties of this composition of Y-type hexagonal ferrite have been investigated. The X-ray diffraction (XRD) patterns confirm single phase Y-type hexagonal ferrite and various parameters such as lattice constants and cell volume have been cal...
full textPhase Formation, Microstructure and Magnetic Properties of BiFeO3 Synthesized by Sol-Gel Auto Combustion Method Using Different Solvents
In this research nano particles of bismuth ferrite (BiFeO3) were synthesized by sol-gel auto-combustion route. The effect of water and ethylene glycol solvents were studied on phase constituents, magnetic properties and microstructure of the bismuth ferrite by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibration sample magnetometer (VSM) techniques. XRD resul...
full textMagnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method
In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achi...
full textTHE EFFECT OF CTAB SURFACTANT ADDITION AND ADDITIONAL Sr ON PHASE FORMATION AND MAGNETIC PROPERTIES OF NANOSIZED SrFe12O19 SYNTHESIZED VIA SOL-GEL AUTO- COMBUSTION METHOD
trontium hexaferrite (SrFe 12 O 19 ) nanosized powders were synthesized by sol-gel auto-combustion method with and without cetyltrimethylammonium boromide (CTAB) addition in the sol with Fe/Sr ratio of 11 (using additional Sr). The resultant powders were investigated by X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FESE...
full textThe effect of molar ratio on structural and magnetic properties of BaFe12O19 nanoparticles prepared by sol-gel auto-combustion method
Nanocrystalline particles of barium hexaferrite has been prepared by the sol–gel auto- combustion method using iron and barium nitrate with a Ba:Fe molar ratio of 1:10. The effect of fuel such as citric acid and aspartic acid was investigated on the structure and magnetic properties of nanoparticles. The results revealed that the formation of barium hexaferritefine particles is influenced by mo...
full textStructural, Magnetic and Acetone Sensing Properties of Barium- Calcium Hexaferrite Synthesized by Sol- Gel Auto Combustion Method
In this research, barium calcium hexaferrite (Ba1-xCaxFe12O19 , 0≤x£1) nanoparticles were synthesized through a sol-gel combustion method. The dried gel samples were then calcined at 950ᵒC for 4:30h. The phase and microstructural evolution of calcined samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results revealed formation ...
full textMy Resources
Journal title
volume 13 issue 1
pages 21- 27
publication date 2016-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023