Effect of Joule-Heating Annealing on Giant Magnetoimpedance of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1 and 2) Melt-Spun Ribbons

Authors

  • Amir Keyvanara Department of Metallurgy and Materials Engineering, Iran University of Science & Technology (IUST), Tehran, Iran.
  • Farzad Shahri Iranian Research Organization for Science and Technology (IROST), Tehran, Iran .
  • Reza Gholamipour Iranian Research Organization for Science and Technology (IROST), Tehran, Iran .
  • Shamsoddin Mirdamadi Department of Metallurgy and Materials Engineering, Iran University of Science & Technology (IUST), Tehran, Iran.
Abstract:

In this work, we have studied the influence of dc joule-heating thermal processing on the structure, magnetoimpedance (MI) and thermal properties of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1, and 2) rapidly solidified melt-spun ribbons. The nanocrystallization process was carried out by the current annealing of as-spun samples at various current densities. As-spun and joule-heated samples were studied by X-ray diffraction (XRD), differential scanning calorimeter (DSC), and magnetoimpedance (MI) measurements. DSC results revealed that by the replacement of B by Al the first and second crystallization peaks are overlapped with each other and the initial nanocrystallization temperature is decreased with the increase in Al content of the alloy. Also it was shown that the replacement of B by Al atoms can improve soft magnetic properties confirmed by magnetoimpedance ratio (MIR%) results for the amorphous joule-heated ribbons. Furthermore, increase in dc joule current density increases the MI ratio first, however; after formation of crystalline phases, it decreases. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Phase transition and magnetocaloric properties of Mn50Ni42−xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons

The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 t...

full text

Dip coating of silica layer on melt-spun Finemet ribbons: surface morphology and electrical resistivity changes

In this study, melt-spun Finemet ribbons were coated by a thin layer of SiO2 using dip coating method. Amorphous ribbon prepared by melt spinning method and dip coating were done by using a solution of tetraethylen orthosilicate as a SiO2 precursor, ethanol as solvent and distilled water for hydrolysis. Different thicknesses of SiO2 layer, namely 304, 349, 451, 526 and 970 nm were obtained prop...

full text

Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14BÕa-Fe nanocomposites by Joule heating

Pr2Fe14B/a-Fe based nanocomposites have been prepared through crystallization of melt-spun amorphous Pr7Tb1Fe85Nb0.5Zr0.5B6 ribbons by means of ac Joule heating while simultaneously monitoring room-temperature electrical resistance R. The R value shows a strong variation with respect to applied current I, and is closely related to the amorphous-to-nanocrystalline phase transformation. The curve...

full text

Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons.

The influence of grain constraint on the magnetic field levels required to complete the isothermal martensitic transformation in magnetic shape memory alloys has been demonstrated for a NiCoMnSn alloy, and the magnetocaloric performance of an optimally heat treated alloy was quantified. Ni45CoxMn45-xSn10 melt spun ribbons with x = 2, 4, 5, and 6 were characterized. The x = 5 sample was determin...

full text

The Structure and Magnetic Properties of Co77Zr18W5 Melt-Spun Ribbons

Based on X-ray diffraction, microscopic and magnetic analysis, the structure and magnetic properties of Co77Zr18W5 melt-spun ribbons were studied in this paper. A new element to stabilize the metastable Co5Zr phase was found and the coercivity observed in Co-Zr alloys can be obviously enhanced by proper tungsten substitution. The Curie temperature of Co77Zr18W5 ribbons is 475 ̊C which suggests t...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 2

pages  111- 116

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023