Effect of baffle oientation on shell tube heat exchanger performance

Authors

  • Hamed Uosofvand Department of Mechanical Engineering.University of Kashan, Kashan, Iran
Abstract:

In this paper, fluid flow and heat transfer in the laboratory (small size) shell tube heat exchanger are analysed by computational fluid dynamic software. In this type of shell tube heat exchanger baffles with different angles of rotation: 00 (horizontal segmental baffle), 150 (from horizontal), 300, 450, 600, 750, 900 (vertical segmental baffle) is used. Effect of baffle orientation on shell tube heat exchanger performance is investigated. The flow domain is meshed by three-dimensional tetrahedral elements. The obtained result has a good agreement with the analytical method (Bell method) and experimental data in the literature. By comparing the pressure drop, heat transfer and heat transfer versus pressure drop (Q/ P) at same flow rate, the shell tube heat exchanger with orientation of (900) have better performance than other angles of baffle orientation. decrease pressure drop 26%, 4.1%, 17.6%, 24.42%, 14% rather than 150, 300, 450 ,600,750 ,00 angle of orientation respectively. That show have better performance than other angles of baffle orientation. So by reducing pressure drop with maintaining heat transfer rate, the operating cost reducing that can be best choice among other models.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Experimental and CFD Study of the Tube Configuration Effect on the Shell-Side Thermal Performance in a Shell and Helically Coiled Tube Heat Exchanger

"> Despite numerous studies of shell and helically coiled tube heat exchangers, a few investigations on the heat transfer and flow characteristic consider the geometrical <span style="font-size: 9pt; col...

full text

Optimal Design of Shell-and-Tube Heat Exchanger Based on Particle Swarm Optimization Technique

The paper studies optimization of shell-and-tube heat exchangers using the particle swarm optimization technique. A total cost function is formulated based on initial and annual operating costs of the heat exchangers. Six variables – shell inside diameter, tube diameter, baffle spacing, baffle cut, number of tube passes and tube layouts (triangular or square) – are considered as the design para...

full text

Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger p...

full text

Nonlinear Control Of A Shell And Tube Heat Exchanger

The paper deals with design and simulation of nonlinear adaptive control of a shell and tube heat exchanger. The method is based on factorization of the controller on a nonlinear static part and an adaptive linear dynamic part. The nonlinear static part is derived using inversion and subsequent exponential approximation of simulated or measured steady-state characteristics of the exchanger. The...

full text

Investigating Tubes Material Selection on Thermal Stress in Shell Side Inlet Zone of a Vertical Shell and Tube Heat Exchanger

In this study, the effect of the tube material on the thermal stress generated in a vertical shell and tube heat exchanger is investigated. Shell and tube heat exchangers are the most common heat exchangers used in industries. One of the most common failures in these exchangers in the industry is the tube failure at the junction of the tube to tubesheet. When the shell side and the tube side fl...

full text

Shell and Tube Heat Exchanger Design Software for Educational Applications*

A software for the thermal and hydraulic design of shell and tube heat exchangers with flowinduced vibration checks has been developed in a Windows-based Delphi programming environment. Its user-friendly input format and excellent colour graphics features make it an excellent tool for the teaching, learning and preliminary design of shell and tube heat exchangers. Design methodology is based on...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  83- 90

publication date 2017-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023