Edge pair sum labeling of some cycle related graphs
Authors
Abstract:
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or odd. A graph with an edge pair sum labeling is called an edge pair sum graph. In this paper we prove that the graphs GL(n), double triangular snake D(Tn), Wn, Fln, and admit edge pair sum labeling.
similar resources
edge pair sum labeling of some cycle related graphs
let g be a (p,q) graph. an injective map f : e(g) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: v (g) → z - {0} defined by f*(v) = σp∈ev f (e) is one-one where ev denotes the set of edges in g that are incident with a vertex v and f*(v (g)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} u {±k(p+1)/2} according a...
full textEdge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
full textSuper Pair Sum Labeling of Graphs
Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...
full textEdge Pair Sum Labeling of Some Subdivision of Graphs
An injective map f : E(G) → {±1,±2, · · · ,±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f∗ : V (G) → Z − {0} defined by f∗(v) = ∑ e∈Ev f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f∗(V (G)) is either of the form { ±k1,±k2, · · · ,±k p 2 } or { ±k1,±k2, · · · ,±k p−1 2 } ∪ { ±k p+1 2 } according as ...
full text3-difference cordial labeling of some cycle related graphs
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...
full text$4$-Total prime cordial labeling of some cycle related graphs
Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...
full textMy Resources
Journal title
volume 48 issue 1
pages 57- 68
publication date 2016-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023